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Moran’s | coefficient
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N no. of spatial units
w; ; - amatrix of spatial weights

W= Z Z Wi (sum of all wi,j )
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Defining spatial neighborhoods and weights

Several of the methods discussed in
chapters 3 and 4 show you how to
analyze patterns and clusters of fea-
ture values. These methods look

at both the difference between the
values of features and the spatial
relationship between the features
(distance or other measure).

Features color coded
by value
Specifically, the GIS compares the il i
value of a feature (the “rarget”) o
the values of neighboring features.

It then moves to the next feature
and does the same thing, and so on,
for all the features in the study area.
In order to do this, the GIS requires
that you define the area surrounding
each target feature within which fea-
ture values are compared—termed
the “neighborhood™ —and the nature
of the spatial relationship between
features. The GIS then assigns
weights to each feature pair to spec-
ify whether the two features are in
each other’s neighborhoods, and

MEASURING THE SPATIAL PATTERN OF FEATURE VALUES

In addition to measuring the pattern formed by the locations of features,
you can also measure patterns of attribute values associated with fea-
tures, such as the pattern formed by median house values. These methods
reveal whether similar values tend to occur near each other, or whether
high and low values are interspersed.

0- 44,360
44,361 - 88,720

B s6.721 - 133,080

B 133.081 - 177.440

I 177.441 - 221,800

Median house value by census tract

The idea behind measuring patterns of feature values
Measuring the spatial pattern of feature values is based on the notion that
things near each other are more alike than things far apart, an idea often

attributed to geographer Waldo Tobler. The idea is consistent with our
1 s L 1 1 1 1 1 ) 101 1

to represent the spatial relationship
between the features,

You define the neighborhood

based on the interaction between
features. Features might influence
each other—for example, the value  Each feature in turn ts

Mitchell (2005), The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics, ESRI Press




Global and Local Measures

Global Measures

o A single value which applies to the entire data set

The same pattern occurs over the entire geographic area

An average for the entire area

Local Measures

o A value calculated for each observation unit

Different patterns or processes may occur in different parts of
the region

A unique number for each location



Global Analysis Methods 2 i & {773 &

Point data without attributes
o Quantrat Analysis
0 Nearest Neighbor Methods
K-order Nearest Neighborhood Analysis (NNA), G and F functions
o Ripley's K-function: K(d) and L(d)
Point/Polygon data with attributes

o Definition of Neighborhoods or Spatial Structures

o Spatial Autocorrelation Index

Moran’s | and Geary’s C Ratio

o Spatial Concentration Index

General G-statistic
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Spatial Relationship and Dependency

Tobler’s First Law of Geography (1970) -
Everything is related to everything else,

but near things are more related than distant things.

Dispersed -ﬁ- Clustered
(-) € Spatial Autocorrelation > (+)

=

Tobler W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46(2): 234-240.
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Definition of Spatial Autocorrelation

Measurement of the similarity of attributes among

spatial units within their neighborhood.

(-) €  Spatial Autocorrelation > (+)

H B
-

Dispersed Random Clustered




How we define the Neighborhood ?

Spatial adjacency

o Physically contacted with each others

Distances between the centroids



1. Spatial Adjacency

= Rook’s

o Units that shares common boundary with length greater than zero

= Queen’s

o Units that have common vertex are also included

(e.g. unit 067 in figure below)




Target feature

Order of Neighborhood

Neighborhood

» 1st order

o Immediate neighbor

o Defined by Rook’s or Queen’s criteria
= 2nd order

= Higher order
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Binary Connectivity Matrix

Symmetrical C;=C;
Values on diagonal are zeros

Raw sum C; =2C,

0 The number of neighbors of unit |

Same as connectivity matrix for network

Not efficient for large numbers of objects
o Redundant storage
o Mostly zeros

0 Another way : Sparse Matrix (ffr#r 42" )



Sparse matrix
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Stochastic Matrix

Equally weighted for neighbors
0 Wij = Cij / Ci
* FL i Row-standardized matrix (5]1% 2 i+ 4£+L)

0 % Jo*F — B 4p A8 cobject e B E



Binary Connectivity Matrix

ID |fnE BiEE FEHE e B WWEE el |hEE |SEE (EAE BREE AFEE EE |EREl Sum
e B 0 1 1 0 1 0 o 1 o 0 0 o o 0 4
HigEE 1 o 1 0 0 1 1 o o 0 0 o o 0 4
HHEE 1 1 o 0 1 0 1 1 o 0 0 o o 0 5
A= 0 0 0 0 1 0 0 1 1 1 0 1 0 0 5
B E 1 0 1 1 0 0 4 1 4 0 0 4 4 0 4
iR E 0 1 0 ] 0 0 1 4 4 0 1 4 4 0 3
H B 0 1 1 0 0 1 o 1 o 1 1 o o 0 &
HEE 1 o 1 1 1 0 1 o o 1 0 o o 0 &
EEH 0 o o 1 0 0 o o o 1 0 1 o 0 3
=HE 0 0 0 1 0 0 1 1 1 0 1 1 1 0 7
i 0 0 0 ] 0 1 1 4 4 1 0 4 1 0 4
FEE 0 0 0 1 0 0 4 4 1 1 0 4 1 1 o
i LE 0 o o 0 0 0 o o o 1 1 1 o 1 4
He e B 0 o o 0 0 0 o o o 0 0 1 1 0 2

Stochastic Weighted Matrix
D |sefnE (FFE |FEE |fiE ECE O MEE |l (REE O |SHEE O FEE O BSEE O |(KEE O |(B1E  |[RRE

e 000 0.25 0.25 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00

SEIRE 0.25 000 020 Q.00 000 020 .20 0.00 000 0.00 0.00 000 0.00 Q.00

R HH 0.20 0.20 0.00 Q.00 0.20 0.00 .20 0.20 000 0.00 0.00 000 0.00 Q.00

={EH 0.00 000 0.00 Q.00 0.20 0.00 Q.00 0.20 0.20 .20 0.00 0.20 0.00 Q.00

#{H 0.25 0.00 020 .25 0.00 0.00 Q.00 0.25 0.00 Q.00 0.00 0.00 Q.00 Q.00

thEE 0.00 0.33 Q.00 Q.00 0.00 0.00 .33 0.00 0.00 Q.00 0.33 0.00 Q.00 Q.00

L 0.00 0.7 Q.17 0.00 0.00 017 0.00 0.17 0.00 0.17 0.17 0.00 0.00 0.00

HER 0.17 0.00 Q.17 0.17 0.17 0.00 0.17 0.00 0.00 0.17 0.00 0.00 0.00 0.00

EHEHE 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.33 0.00 0.00

=EE 0.00 0.00 0.00 0.14 0.00 0.00 0.14 0.14 0.14 0.00 0.14 0.14 0.14 0.00

iR E 0.00 0.00 0.00 0.00 0.00 025 0.25 0.00 0.00 0.25 0.00 0.00 025 0.00

#FEE 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.20 0.20 0.00 0.00 0.20 0.20

ELE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.25 0.00 0.25

e 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.00




2. Distances

= Distance decay
o W;=1 /d i

EIWij=1/d 2ij
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Centroid Distances

Distance between centroids

Centroid : geometric center of the polygon

o Affected by the shape of the polygon

o May be located outside the polygon




Spatially Weighted Matrix

Using Centroid Distances

1D i (SRR |FEERE [SOfEE ECHE O |fEE ol |EE | SFH O REE ORSH AFEE BIE  |JutH

IR O] 1359] 1602|2220  1948|  2334]  1913]  2142)  3149)  2530]  2763|  3169) 3238 3375
SiEE 1359 0]  2033]  2966) 2657|1737  2002|  2602|  3716|  2824|  276d|  3618] 3337 3758
Gl 1602| 2033 0 974 684] 1477 506 585 1692 930)  1z24|  1633] 1645 1812
sefp B 2229) 2966 974 0 309 2335|1309 607 952 932|  1519] 1073|1607 1316
B 1948 2657 654 309 0] 2103] 1075 478) 1204 903] 1444  1265|  1644| 1496
s e 2334) 1737|1477 2335 2103 0 1029] 1747  2683| 1678]  1310]  2461| 1869 2508
Ealn:) 1913|2002 506  1309] 1075|1029 0 T4l 1790 829 856| 1640|1381 1762
i 2142) 2602 585 607 478] 1747 741 0] 1115 450 966)  1049] 1209|1238
SEE 3149 3716|1602 052  1204]  2683] 1790|1115 O] 1005|1480 324)  1203] S22
EZE 2530] 2824 930 932 903] 1678 829 450) 1005 0 595 816 760 935
s 2763) 2764  1224]  1519] 1444|1310 856 966| 1480 595 0] 1208 581 1214
FEE 3160)  3618|  1633]  1073|  1265|  2461) 1640|1049 324 816| 1208 0 882|247
WEILE 3238)  3337|  le45| 1607  le44| 1860  1381] 1209 1203 760 581 862 0 782
it B 3375)  3758|  1812]  1316]  1496] 2508| 1762|1238 522 935] 1214 247 782 0




Nearest Distances (#&.% ¥ # )

= % iFPolygonz. [ & &gk injEdg

o Will be zero for adjacent polygons




1D inE |FIRE |FHHE sotE |ECE WRE ol |REE SEE | EFE BSE ARE B8 |FRE
R a0 0 0 51 0 837 403 0 606 464 723 615 934 | 1075
HiRE 0 0 0 920 849 0 0 686 | 1236 731 653 | 1122| 1095 1301
FHHE S a0 0 0 143 0 319 0 0 529 166 204 477 272 i3
S E 51 920 148 0 0 878 299 0 a0 0 oY a0 549 4581
B E { 849 0 o 0 g7d 322 0 405 260 Boo 415 o3 g
e 837 0 319 878 879 a0 0 235 986 234 0 609 463 691
Ho 403 0 0 299 322 0 0 0 471 0 0 269 269 477
i E 0 6BL 0 0 0 235 0 0 g9 0 209 g9 407 o008
ESEH BO6 | 1236 529 0 405 986 471 89 a0 0 583 a0 o547 67
=FE 464 731 166 0 260 234 0 0 0 0 0 0 0 169
{mE 23 623 304 67 BO0 a0 0 209 283 0 0 70 0 179
AEE bls | 1122 477 0 415 609 269 89 o 0 il o 0 o
HiLE 934 | 1095 o272 249 723 463 269 407 o247 o 0 { 0 0
HpotEE | 1075 | 1301 i3 481 870 631 477 558 67 169 179 a0 0 0

Spatially Weighted Matrix

Using Nearest Distances




Spatial Weights Matrix Approaches

Neighborhood
Definition

Spatial Weights
Matrix

B Rook’s Definition
B Queen’s Definition

M Binary Connective Matrix

B Stochastic or Row Standardized
Weights Matrix

B Centroid Distances

B Nearest Distances
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Defining spatial neighborhoods and weights

Several of the methods discussed in
chapters 3 and 4 show you how to
analyze patterns and clusters of fea-
ture values. These methods look

at both the difference between the
values of features and the spatial
relationship between the features
(distance or other measure).

Specifically, the GIS compares the
value of a feature (the “target”) to
the values of neighboring features.

It then moves to the next feature
and does the same thing, and so on,
for all the features in the study area.
In order to do this, the GIS requires
that you define the area surrounding
each target feature within which fea-
ture values are compared—termed
the “neighborhood™ —and the nature
of the spatial relationship between
features. The GIS then assigns
weights to each feature pair to spec-
ify whether the two features are in
each other’s neighborhoods, and

to represent the spatial relationship
between the features,

You define the neighborhood

based on the interaction between
features. Features might influence

each other—for example, the value  Each feature in turn is

Features color coded
by value

Target feature




Measuring Spatial Autocorrelation

Spatial weighting W;;
a Contiguity [binary or row-standardized]

Common Border

0 Distance [centroids or nearest]
Distance band

Kth-nearest neighbors



1. Index of Spatial Autocorrelation: Moran’s |

N 22 2. wij(zi — Z)(z5 — T)
W > i(xi — )

where

N is the number of cases

a is the mean of the variable

£Li isthe variable value at a particular location |

w; isa spatial weight indexing location of i relative to j

s

i 11 wi,j
215 (sum of a iJ )

= Applied to a continuous variable for polygons or points
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Spatial Autocorrelation: Moran’s | Statistic

Product of the deviation from the mean

/ for all pairs of adjacent regions (w;=1)

nZZw (v, =N, =)
[=—"L

>0 | T2,
;_/v i#] \

Essentially a measure of Sum of the weights (count
variance across the regions of all adjacent pairs)

» n = number of regions

» w; = measure of spatial proximity between region i and |




Moran’s | Interpretations

Similar to correlation coefficient, range between + 1.0

0 O indicates no spatial autocorrelation, approximate technically it is
-1/(n-1)

0 Highly auto-correlated, if | isclosedto 1 or-1

o Sign of values indicate negative/positive autocorrelation

Can be used as index for dispersion/random/cluster patterns
o 0:random

0 Positive : more toward clustering

o Negative: more toward dispersion/uniform



Significance Tests for Moran’s |

Z-score: Z=(1—E(l)) / Sg,(I)
2 |: Moran’s | of sample
o E(l): Expected value of | ; E(I) =-1/(n-1)

o S...:Standard error

Erre

Depend on if free or non-free sampling is used

o = 0.05, Critical Z value =+ 1.96
o will be £1.645 fora=0.1

T AT I EFLE
0 Ho:g £ 8 ("gfs4~ %)
o At p< 0.05, Reject Ho if |Z]| >1.96
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2¢ 2
VARN(I) = (n”31 : ”‘23 +3WT) [Ex (D) (with replacement.)
Won=—1) (normality)
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(randomization)
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2
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Randomization vs. normality sampling

Randomization sampling assumes that the observed spatial pattern of
your data represents one of many possible spatial arrangements—the
number of features having a particular value is always going to be the
same (based on the observed number of each), but the arrangement can
change. Suppose you have the number of cases per census tract of a dis-
ease. Some tracts have several cases of the disease; many don’t have any.
Your null hypothesis would be that the disease strikes randomly. If you
could take the case count values for your study area and scatter them on
a map of the census tracts, making sure every census tract got a value,
you'd create a random pattern. The randomization null hypothesis pos-
tulates that if you could perform this operation infinite times, most of the
time you would produce a pattern that was not markedly different from
the observed pattern. If your significance test indicates that you should
reject the null hypothesis at the specified confidence level, then you know
that the observed arrangement of values would significantly differ from
this randomly produced pattern.

TEXT_Statistical.Significance.pdf (# % ¥ #&# )



Randomization vs. normality sampling (cont’d)

Normalization sampling, in contrast, assumes that the number of cases
associated with any particular census tract could be derived from an infi-
nitely large, normally distributed population of values (through some ran-
dom sampling process). Rather than scattering the observed values on

the map of census tracts, you'd pick values from this hypothetical nor-
mal distribution and scatter those values on the map to create the random

pattern.

TEXT_Statistical.Significance.pdf (#F % ¥ ## &)



Randomization vs. normality sampling (** &)

The normalization null hypothesis not only assumes
that your data is a sample, but also that the sample
was obtained randomly and that the population h m
which the sample was obtained has a normal
distribution of values. Every time you make an
assumption about the data or the sample, you're
potentially inducing error into the test.

Randomization makes fewer assumptions than
normalization, so it's safer to use, unless you know for
sure your data matches the assumptions of
normalization.

TEXT_Statistical.Significance.pdf (# %4 ##H)



Test Statistic for Normal Frequency Distribution

25% | | 25% | 1%

Reject null -1 .96 —1/(On-1) 1.96 2.54
Emm) Reject null at 2.5%
Null Hypothesis: no spatial autocorrelation mm) Reject null at 1%
*Moran’s| =0 | *technically —1/(n-1)
Alternative Hypothesis: spatial clustering exists
*Moran’s | >0 (¥ 2 #% 7))
Reject Null Hypothesis if Z test statistic > 1.96 (or <-1.96)
---less than a 2.5% chance that, in the population, there is no
spatial clustering
---97.5% confident that spatial clustering exits




Monte-Carlo Significance Test

Permutation test (£t 7| ¥ <)

Q

The null hypothesis is that the data were determined and
then assigned to their spatial locations at random.

The alternative is that the assignment to each location
depended on the assignment at that location's neighbors.
The permutation test does not randomize over the possible
sets of data values--it considers them given--

but conditional on the data observed, considers all possible

ways of reassigning them to the locations.



Monte-Carlo Significance Test (cont’d)

Permutation test (£ >+ <)

Such a reassignment is a permutation. For n data points, there
aren! =nx(n-1) x (n-2) x ... x (2) x (1) permutations.

For n much larger than 10 or so, that's too many to generate.

There usually is no simple analytical expression for the full
permutation distribution.

Accordingly, we typically resort to sampling from the set of all
permutations at random, giving them all equal weight. The
distribution of the autocorrelation statistic in a sufficiently
large sample (usually involving at least 500 permutations)
approximates the true distribution.



‘ Examples

Autocorrelated Data

00 02 04 06 08B 10

Uncorrelated Data

oo 02 04 06 08 10

F requency

Frequency

500 1000 2000

o

1500 2500

500

0

Mull Distribution of Moran's |

JEEE EEEREEREE RN

| 1 I I 1
0.0 005 000 005 010

|
p=0.0453

Mull Distribution of Moran's |




‘ Output in R: Moran’s | statistic

> M<-moran.test(Popn, listw=TWN_nb_w, zero.policy=T); M

Moran I test under (randomisation

data: Popn
weights: TWN_nb_w

Moran I statistic standard deviate = 2.1678, p-value = 0.01509
alternative hypothesis: greater
sample estimates:

Moran I statistic Expectation variance

0.181359104 -0.025000000 0.009062094

i Monte-Carlo simulation
— Significance Test

60 80
]

Frequency
40

20

\ T T T T 1
-0.2 -0.1 0.0 01 02 03

Simulated Moran's |




Moran.test()

moran test {spdepl

R Documentation

Moran's | test for spatial autocorrelation

Description

Moran's test for spatial autocorrelation using a spatial weights matrix in weights list form. The
assumptions underlying the test are sensitive to the form of the graph of neighbour relationships
and other factors, and results may be checked against those of moran .mc permutations.

Usage

moran.test(x, listw, |randomisation=TRUE,

zero.policy=NULL,

alternative="greater", rank — FALSE, na.action=na.fail, s=pChk=NULL, =3

randomisation variance of | calculated under the assumption of randomisation, if FALSE

normality




Concept of Moran Scatter Plots

Scatter Plot Moran Scatter Plot

Two variables Only one variable

Scatterplat of ¥ vs X (r = 0.717) - Scatterplot of ¥ vs X (r = 0.717)
) v
£ c°
S -
= £
o Q
O C

Education Crime Rate




Moran Scatter Plots

Moran’s | can be interpreted as the correlation between variable, X, and
the “spatial lag” of X formed by averaging all the values of X for the
neighboring polygons.

Maran's I= 05237

Lag X;
is average
of these

Least squares “best fit” line to the
points.

o The slope of this regression line is
CRIME Moran’s |




Moran Scatter Plot: example

= Scatter plot of X vs. Lag-X Moran’s | = 0.49

= The slope of the regression is
Moran’s |

Lag-X

54 ./.‘.’ .. . ed
_|Low . by high
Surro\iljvvdeld N

Population density



Moran Correlograms

Correlogram: plot distance on X-axis against correlation coefficient on Y-axis

04
1

Moran | statistic
0.0
|
P
[ =]
A

10 30 50 70 20 110 130

distance classes

150

Moran | statistic

04

0.2

0.0

70 80

distance classes

10

130

150




Getis-Ord General G-statistic

Moran’s | #& % % 4|

“ hot spots” or “cold spots”
Spatial Concentration method
Definition

Z Z Wi (d)x;x j d : neighborhood distance
Z Z XiXj W, : 1 if itis within d, O otherwise

G(d) =

Calculation of G must begin by identifying a neighborhood
distance within which cluster is expected to occur



Getis-Ord General G-Statistic

General G-statistic can distinguish between hot/cold spots.
It identifies spatial concentrations.

o G isrelatively large if high values cluster together

o Gisrelatively low if low values cluster together

G statistic is interpreted relative to its expected value
o > E(G) = potential “hot spot”
0 < E(G) =» potential “cold spot”

o = E(G) = no spatial association

“73f 2-larger/smaller i ¥ j& g e o] %7 >
% 11 Z teststatistic ks T L B i EEFN -



Significance Test for Getis-Ord General G

Statistical Significance Test
G- E(G)
SErr(G)

7

Expected G: E(G)= n(:]N ) ; where W = ZZw,-j(d),
U

Standard Error will depend on the sampling method
(free / non-free)



Getis-Ord General G-statisticin R

> G<-globalG. test(Popn, Tistw=TwWN_ranl_wbh); G
Getis-0Ord global G statistic

data: Popn
welghts: TWN_ranl_wb

standard deviate = 3.4804, p-value = 0.0002504
alternative hypothesis: greater

sample estimates:
Global G statistic Expectation vVariance
0.6216802233 0.5402439024 0.0005474983
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MEASURING THE SPATIAL PATTERN OF FEATURE VALUES

In addition to measuring the pattern formed by the locations of features,
you can also measure patterns of attribute values associated with fea-
tures, such as the pattern formed by median house values. These methods
reveal whether similar values tend to occur near each other, or whether
high and low values are interspersed.

0 - 44,360
44 361 - 88,720

B 56,721 - 133,080

B 133.081-177.440

I 177441 - 221,800

Median house value by census tract.

The idea behind measuring patterns of feature values
Measuring the spatial pattern of feature values is based on the notion that
things near each other are more alike than things far apart, an idea often
attributed to geographer Waldo Tobler. The idea is consistent with our
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Y 1% Rpackage: spdep
Spatial Dependence: Weighting Schemes, Statistics and Models

spdep: Spatial Dependence: Weighting Schemes, Statistics and Models

A collection of functions to create spatial weights matrix objects from polygon 'contiguities', from point
patterns by distance and tessellations, for summarizing these objects. and for permitting their use in
spatial data analysis, including regional aggregation by minimum spanning tree: a collection of tests for
spatial 'autocorrelation'. including global "™Morans I', 'APLE'. 'Gearys C', 'Hubert/Mantel' general cross
product statistic. Empirical Bayes estimates and 'Assuncdo/Reis' Index. 'Getis/Ord' G and multicoloured
join count statistics, local Moran's I' and 'Getis/Ord’' G. 'saddlepoint’ approximations and exact tests for
global and local '"Moran's I'; and functions for estimating spatial simultaneous 'autoregressive' ('SAR') lag
and error models, impact measures for lag models, weighted and 'unweighted' 'SAR' and 'CAR' spatial
regression models, semi-parametric and Moran 'eigenvector' spatial filtering, 'GM SAR' error models,
and generalized spatial two stage least squares models.
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Spatial Neighbors

o Contiguity: QUEEN vs. ROOK poly2nb(); nb2mat()

o K-nearest Neighbors (KNN) knn2nb(); knearneigh(coords, k=2)
o Distance-based dnearneigh()

From Spatial Neighbors to ListW (Weighting matrix)
o nb2listw()

Spatial Autocorrelation

o Mapping the attribute tmap::tm_shape()
o Moran’s | Statistic moran.test()

o Monte-Carlo simulation moran.mc()

o Moran correlogram sp.correlogram()
o Moran Scatter Plot moran.plot()

d

Getis-Ord General G Statistic globalG.test()
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Spatial Neighbors: Contiguity; K-nearest Neighbors (KNN); Distance-based
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Diversity and Distributions, (Diversity Distrib.) (2007) 13, 66-69

A Incorporating spatial autocorrelation may
sallull invert observed patterns

Ingolf Kithn

UFZ — Centre for Environmental Research ABSTRACT
Leipzig-Halle, Department Community Ecology
(BZF), Theodor-Lieser-Str. 4, 06120 Halle,
Germany

Though still often neglected, spatial autocorrelation can be a serious issue in ecology
because the presence of spatial autocorrelation may alter the parameter estimates
and error probabilities of linear models. Here I re-analysed data from a previous
study on the relationship between plant species richness and environmental
correlates in Germany. While there was a positive relationship between native plant
species richness and an altitudinal gradient when ignoring the presence of spatial
autocorrelation, the use of a spatial simultaneous liner error model revealed a
negative relationship. This most dramatic effect where the observed pattern was
inverted may be explained by the environmental situation in Germany. There the
highest altitudes are in the south and the lowlands in the north that result in some
locally or regionally inverted patterns of the large-scale environmental gradients
from the equator to the north. This study therefore shows the necessity to consider
Correspondence: Ingolf Kthn, Virtual Institute spatial autocorrelation in spatial analyses.

for Macroecology, Theodor-Lieser-Str. 4, 06120

Halle, Germany. Tel.: (++49)345/558-5311 or Keywords
(++49)345/558-5329. Environmental correlates, Germany, linear models, spatial autoregressive models,

E-mail: ingolf. kuehn@ufz.de plant species richness.




