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 6.21: Oral Presentation (term project) 10%
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(using R Shiny or any programming languages)
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6/21(Thu.) Oral Presentation 相關規定

 繳交截止日期 6/18 (Mon.) 10:00pm

 繳交項目 A4 ONE-page (pdf file)，包含；

 系統網址

 功能：說明與畫面截圖 (what: data, functions and results)

 動機：目的 (why)；方法 (how)

 評選標準：空間應用創意、適當分析方法、系統架構完整

 公告入選12組 6/19 (Tue.) 6:00pm

 入選12組繳交PPT 6/21 (Thu.) 2:00pm

 每組口頭簡報 10 min (含系統展示)

 期末報告成績公告 6/24 (Sun.) 6:00pm
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Basics of Regression

 A statistical method used to examine the relationship between a variable of 
interest (dependent variable, Y) and one or more explanatory variables 
(predictors, X)

 Strength of the relationship

 Direction of the relationship (positive, negative, zero)

 Goodness of model fit

 Allows you to calculate the amount by which your dependent variable 
changes when a predictor variable changes by one unit (holding all other 
predictors constant)

 Often referred to as Ordinary Least Squares (OLS) regression

 Minimize Σ(Y-Y_hat)2

 Regression with one predictor is called simple regression

 Regression with two or more predictors is called multiple regression

 Just like correlation, if an explanatory variable is a significant predictor of 
the dependent variable, it doesn’t imply that the explanatory variable is a 
cause of the dependent variable



Elements of an OLS Regression Equation 

Source: ArcGIS Desktop Help- Regression analysis basics



Terminology of Regression Analysis

 Dependent variable (y)

 Independent/Explanatory variables (X) 

 Regression coefficients (β) 

 β0 is the regression intercept. It represents the expected value for the dependent 

variable if all of the independent variables are zero. 

 P-Values: most regression methods perform a statistical test to compute a 

probability, called a p-value, for the coefficients associated with each 

independent variable. The null hypothesis for this statistical test states that 

a coefficient is not significantly different from zero. 

 R 2 /R-Squared: Multiple R-Squared and Adjusted R-Squared are both 

statistics derived from the regression equation to quantify model 

performance. The value of R-squared ranges from 0 to 100 %.

 Residuals: these are the unexplained portion of the dependent variable, 

represented in the regression equation as the random error term, ε.
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Example

 Assume we have data on median income and median house 

value in 381 census tracts (unit of measurement)

 Each of the 381 tracts has information on income (call it Y) and 

on house value (call it X). So, we can create a scatter-plot of Y 

against X.

 Through this scatter plot, we can calculate the equation of the line 

that best fits the pattern (recall: Y=mx+b, where m is the slope 

and b is the y-intercept)

 This is done by finding a line such that the sum of the squared

(vertical) distances between the points and the line is minimized

 Hence the term ordinary least squares (OLS)

 Now, we can examine the relationship between these two 

variables
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Extend this to cases with 2+ predictors

 The coefficient β of each predictor may be interpreted as the amount by 

which the dependent variable changes as the independent variable 

increases by one unit (holding all other variables constant)

,...22110   nn XXXIncome

 When we have n>1 predictors, rather than getting a line in 2 

dimensions, we get a line in n+1 dimensions (the ‘+1’ accounts for 

the dependent variable)

 Each independent variable will have its own slope coefficient 

which will indicate the relationship of that  particular predictor with 

the dependent variable, controlling for all other independent 

variables in the regression.

 The equation of the best fit line becomes

where
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An Example with 2 Predictors: Income as a 
function of House Value and Crime

  TheftsValueHouseIncome 210



 The so-called p-value associated with the variable

 For any statistical method, including regression, we are testing some 

hypothesis. In regression, we are testing the null hypothesis that the 

coefficient (i.e., slope) β is equal to zero (i.e., that the explanatory variable is 

not a significant predictor of the dependent variable). 

 Formally, the p-value is the probability of observing the value of β as 

extreme (i.e., as different from 0 as its estimated value is) when in reality it 

equals to zero (i.e., when the Null Hypothesis holds). If this probability is 

small enough (generally, p<0.05), we reject the null hypothesis of β=0 for an 

alternative hypothesis of β<>0.

 Again, when the null hypothesis (of β=0) cannot be rejected, the dependent variable is not 

related to the independent variable. 

 The rejection of a null hypothesis (i.e., when p <0.05) indicates that the independent 

variable is a statistically significant predictor of the dependent variable

 One p-value per independent variable

Some Basic Regression Concepts



 The sign of the coefficient of the independent 

variable (i.e., the slope of the regression line) 

 One coefficient per independent variable

 Indicates whether the relationship between the 

dependent and independent variables is positive or 

negative

 We should look at the sign when the coefficient is 

statistically significant (i.e., significantly different from 

zero)

Some Basic Regression Concepts (Cont’d)



Some Basic Regression Concepts (Cont’d)

 R-squared (Coefficient of Determination): the percent of variance in 

the dependent variable that is explained by the predictors

 In the single predictor case, R-squared is simply the square of the 

correlation between the predictor and dependent variable

 The more independent variables included, the higher the R-

squared

 Adjusted R-squared: percent of variance in the dependent variable 

explained, adjusted by the number of predictors

 One R-squared for the regression model



Common Regression Problems

 Omitted explanatory variables (misspecification)

 Non-linear relationships

 Data outliers

 Multicollinearity

 Non-stationarity

 Inconsistent residual variance (heteroskedasticity)

 Autocorrelated residuals

 Normal distribution bias
Source: ArcGIS Desktop Help- Regression analysis basics



Some (but not all) Regression Assumptions

 The dependent variable should be normally distributed (i.e., the 

histogram of the variable should look like a bell curve)

 Ideally, this will also be true of independent variables, but this is not 

essential. Independent variables can also be binary (i.e., have two values, 

such as 1 (yes) and 0 (no))

 The predictors should not be strongly correlated with each other (i.e., 

no multicollinearity)

 Very importantly, the observations should be independent of each other. 

(The same holds for regression residuals). If this assumption is violated, 

our coefficient estimates could be wrong!

 General rule of thumb: 10 observations per independent variable



Additional Regression Methods

 Logistic regression/Probit regression

 When your dependent variable is binary 

 E.g., Employment Indicator (Are you employed? Yes/No)

 Multinomial logistic regression

 When your dependent variable is categorical and has more than two 

categories 

 E.g., Race: Black, Asian, White, Other

 Ordinal logistic regression

 When your dependent variable is ordinal and has more than two 

categories

 E.g., Education (1=Less than High School, 2=High School, 3=More than 

High School)

 Poisson regression

 When your dependent variable is a count

 E.g., Number of traffic violations (0, 1, 2, 3, 4, 5, etc)



殘差的重要性與殘差檢定

 根據高斯-馬可夫定理 (Gauss-Markov Theorem)，

只要殘差符合某些特定的假設，使用一般最小

平方法(OLS)來估計迴歸係數時，就可以得到

具有「最佳線性不偏估計量」(Best Linear 

Unbiased Estimator, BLUE) 的性質。

不偏性 (unbiasedness)

有效性 (efficiency)

一致性 (consistency)



殘差假設的檢定

迴歸模型的殘差 (residual) 必需符合以下的性質：

 殘差期望值為零 (zero mean) : 

 E(u) = 0

 殘差具同質變異 (homoskedasticity) :

 var(u) = σ2，σ2 為一固定常數

 殘差無自我相關 (non-autocorrelation) : 

 cov(ut, ut-s) = 0, for s ≠0

 自變數與殘差無相關 (orthogonality) : 

 cov(x, u) = 0, for any I

 殘差為常態性 (normality)

符合以上要求之殘差稱為獨立相同分配 (independently identical distribution) 

殘差，英文縮寫為 iid，用符號表示則為：u ~ iid (0, σ2)



OLS Estimation

http://www.uni-kassel.de/~rkosfeld/



OLS Estimation (cont’d)

http://www.uni-kassel.de/~rkosfeld/



OLS Estimation : Model Fitness

http://www.uni-kassel.de/~rkosfeld/



OLS Parameter Estimation : Model Fitness

http://www.uni-kassel.de/~rkosfeld/



Why Geospatial: Neighborhood Structure

(各鄉鎮市區的人口結構)

There are NO
Spatial Associations/ Orientations

Regression Assumption:
the observations should be independent of each other.



Spatial Autocorrelation

 Recall:

 There is spatial autocorrelation in a variable if observations 

that are closer to each other in space have related values 

(Tobler’s Law)

 One of the regression assumptions is independence of 

observations. If this doesn’t hold, we obtain inaccurate 

estimates of the β coefficients, and the error term ε contains 

spatial dependencies (i.e., meaningful information), whereas 

we want the error to not be distinguishable from random noise.



Imagine a problem with a spatial component…

This example is obviously a 
dramatization, but 
nonetheless, in many spatial 
problems points which are 
close together have similar 
values



R Sample data: columbus



R code: OLS Regression



R code: Checking the regression residuals

col.listw <- nb2listw(col.gal.nb)

col.moran <- lm.morantest(columbus.lm, 
col.listw, alternative="two.sided")

col.moran



R code: What NOT to do

col.e <- resid(columbus.lm)

col.morane <- moran.test(col.e, col.listw, 
randomisation=FALSE, alternative="two.sided")



Spatial Regression Models

 Simultaneous Autoregressive Model (SAR)

 Spatial Lag Model (SLM), or 

Spatial autoregressive Model (SAR)  

 Spatial Error Model (SEM)

 Spatial Durbin Model (SDM)



Simultaneous Autoregressive Model (SAR)

 The SAR specification uses a regression on the 
values from the other areas to account for the 
spatial dependence. This means that the error 
terms ei are modelled so that they depend on 
each other in the following way:

residual errors

The bij values are used to represent spatial dependence between areas.
bii must be set to zero so that each area is not regressed on itself.



Simultaneous Autoregressive Model (SAR)

λ is a spatial autocorrelation parameter and 
W is a matrix that represents spatial dependence



Simultaneous Autoregressive Model (SAR)

aspatial trend 
component

spatial stochastic
component



R code: Preparation for SAR model

# STEP1 Mapping OLS regression residuals.

NY8 <- readOGR("Spatial.R", "NY8_utm18")

nylm <- lm(Z~PEXPOSURE+PCTAGE65P+PCTOWNHOME, 
data=NY8)

NY8$lmresid <- residuals(nylm)

lm.palette <- colorRampPalette(c("white","orange", 
"red"), space = "rgb")

spplot(NY8, zcol="lmresid", col.regions=lm.palette(20), 
main="Resid"



R code: Results
STEP1. Mapping OLS regression residuals



R code: 
STEP2. Checking the regression residuals



R code: STEP3. SAR model

nysar<-
spautolm(Z~PEXPOSURE+PCTAGE65P+PCTOWNHOME, 
data=NY8, listw=NYlistw)

summary(nysar)



R code: Trend vs. Stochastic 

NY8$sar_trend <- nysar$fit$signal_trend

NY8$sar_stochastic <- nysar$fit$signal_stochastic

lm.palette <- colorRampPalette(c("white","orange", 
"red"), space = "rgb")

spplot(NY8, zcol="sar_trend", col.regions=lm.palette(20), 
main="sar_Trend")

spplot(NY8, zcol="sar_stochastic", 
col.regions=lm.palette(20), main="sar_Stochastic")



R code: Mapping Trend vs. Stochastic 
Components 



Spatial Lag Model vs. Spatial Error Model

Spatial Lag 
Model
(SLM)

Spatial Error 
Model
(SEM)



Spatial Durbin Model (SDM)



Fitting spatial regression models (e.g. SLM): 
Maximum Likelihood Estimation, MLE

http://www.uni-kassel.de/~rkosfeld/



Example

http://www.uni-kassel.de/~rkosfeld/



http://www.uni-kassel.de/~rkosfeld/



http://www.uni-kassel.de/~rkosfeld/



http://www.uni-kassel.de/~rkosfeld/



Error
(residual)

Error
Variance

http://www.uni-kassel.de/~rkosfeld/



R code: Spatial Lag Mode, SLM

# row-standardized matrix

NYlistwW <- nb2listw(NY_nb, style = "W")

nylag <-

lagsarlm(Z~PEXPOSURE+PCTAGE65P+PCTOWNHOME, 

data=NY8, listw=NYlistwW)

summary(nylag)



R code: Spatial Lag Mode, SLM
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Example: OLS Residuals vs. SL Residuals

Non-random patterns and clustering Random Noise



R code: Spatial Error Model, SEM

nyerr <-
errorsarlm(Z~PEXPOSURE+PCTAGE65P+PCTOWNHOME, 
data=NY8, listw=NYlistwW)

summary(nyerr)



R code: Spatial Error Model, SEM



Spatial Error Model = 
Simultaneous Autoregressive Model (SAR)

spautolm()errorsarlm()



Compare errorsarlm() and spautolm()





R code: Spatial Durbin Mode, SDM

nymix <-

lagsarlm(Z~PEXPOSURE+PCTAGE65P+PCTOWNHOME, 

data=NY8, listw=NYlistwW, type="mixed“ )

summary(nymix)



R code: Spatial Durbin Mode, SDM

Angus
打字機
鄰近y的效果



Comparing SLM and SDM



Model Evaluation (spatial lag or error?)

 Data-driven approach

 tests for lack of spatial effects after fitting a spatial 

lag/error model

 Theory-based approach

 based on substantive grounds



Model Fitting 

 Akaike’s Information Criterion (AIC) and Schwartz’s 

Bayesian Information Criterion (BIC) are often used, 

which measure the fit of the model to the data.

 Models having a smaller AIC or a smaller BIC are 

considered the better models in the sense of model 

fitting balanced with model parsimony.



Data-driven approach

 Moran’s I for OLS residuals

 Langrage Multiplier (LM) tests

 Robust Langrage Multiplier (LM) tests

OLS residuals



Source : International Journal of Health Geographics 2008, 7:62

Langrage Multiplier (LM) 
tests

Moran’s I  
tests



Source : International Journal of Health Geographics 2008, 7:62

Robust Langrage 
Multiplier (LM) 
tests



R code: Langrage Multiplier (LM) tests

NYlistwW <- nb2listw(NY_nb, style = "W")

res <- lm.Lmtests(nylm, listw=NYlistwW, test="all“ )

summary(res)



Example: Modeling Global Democratization

OLS Regression:

Source: 

Ward (2008). Spatial Regression Models, Sage Publications, Inc 



OLS Results

Source: 

Ward (2008). Spatial Regression Models, Sage Publications, Inc 



Democracy score vs. log (GDP)

Source: 

Ward (2008). Spatial Regression Models, Sage Publications, Inc 



OLS Regression Residuals

Source: 

Ward (2008). Spatial Regression Models, Sage Publications, Inc 



Spatial Autocorrelation Test for OLS Residuals

 The computed Moran’s I statistic for these OLS residuals is 

0.40, with a variance of 0.0028 and has an associated p-value 

that is ~ 0. 

 This tells us that the OLS results, which assume independent 

observations, are strongly affected by the spatial clustering in 

the dependent and independent variables. As a result, they 

are likely to be misleading for both the statistical and 

substantive inferences that we may wish to draw about the 

relationship between democracy and its social requisite of 

wealth, as captured in GDP per capita.

Source: 

Ward (2008). Spatial Regression Models, Sage Publications, Inc 



Spatial Lag Model

 Using Maximum Likelihood Estimation (MLE) to estimate 

rho (ρ) and beta (β).



Equilibrium (Spillover) Effects in Spatial Lag Model

spatial multiplier

This multiplier tells us how much of the change in xi will 

“spill over” onto other states j and in turn affect yi

through the impact of y in the spatial lag.



Measuring Spillover Effects

 To understand how one state’s GDP per capita 

affects the expected value of democracy in other 

states



Measuring Spillover Effects

Equilibrium impacts of log GDP per capita (X) 
for Russia

Effects on predicted democracy (Y)
if China had a POLITY score of 10



回顧：空間迴歸模式的R函數

 OLS: lm (y~x1+x2+..., data= )

 Moran's I for Regression Residuals: lm.morantest (lm, listw= )

 SAR: spautolm (y~x1+x2+..., data= , listw= )

 SLM: lagsarlm (y~x1+x2+..., data= , listw= )

 SDM: lagsarlm (y~x1+x2+..., data= , listw= , type="mixed" )

 SEM: errorsarlm (y~x1+x2+..., data= , listw= )

 Model Evaluation: lm.Lmtests (lm, listw= , test="all" ) 

 Model Comparison: anova (lm1, lm2)




