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Space-Time Clustering

Spatial clustering all the time
Spatial clustering within a specific time period

0 Hot spot could occur during certain time periods

Space-time clustering

2 A number of events could occur within a short time period

within a concentrated area.

0 There is an interaction between space and time in that spatial

hot spots appear at particular times, but are temporary.
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Test of Space-Time Interaction
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in Medicine 15:1935-49.
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Space-Time Clustering
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Point Data with Location and Time

Point A.
(location#l, time#1l)

Q Point C.
A (location#3, time#3)
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PointB. e "
(location#2, time#2) O

Point D.
(location#4, time#4)

Pairs of Points = N*(N-1)/2 =6

Pair Distance Time Interval
A-B tgggggzg Time#1-Time#2
A-C
A-D
B-C
B-D




Sample Data

Data: point3.shp

point3.rar

{8 Yiew Data Table

Record EYENT | X Coordinate | ¥ Coordinate | DAYNUMBER
1 1 3 1 1
2 2 1 3 3
E: 3 1 5 5
4 4 3 7 7
5 5 1 4 g
= G 1 11 11
i 7 3 13 13
g = 1 15 1%
9 9 1 17 17
10 10 3 19 19
11 11 1 21 21
12 12 1 23 23

# of Events (N) = 12
Pair of Points =
= N*(N-1)/2 =66
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‘ Generating the Distance and Time Matrix
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R Functions and Package

source("ST functions.R")

Functions

DiggleETAL. Test function (pts, time, polygon, range, s, T, Nrep)

Jacquez.test function (x, vy,
KnoxA. Test function (x, v,
KnoxM. tTest function (x, v,
Mantel.test function (x, v,
source(splancs)

Time,
Time,
Time,
Time,

k, Nrep)

dell, del2)

dell, del2, Nrep)
cl, c2, Nrep)

Tango T. Statistical Methods for Disease Clustering, Springer, 2010.




1. Concept of Knox Test (1964)

The Knox method quantifies space-time interaction based on

critical space and time distances.

The test statistic, X, is a count of the number of pairs of cases
that are separated by less than the critical space and time
distances. The concept is that pairs of cases will be near to
one another when interaction is present, and the test statistic

will be large.



Knox Test (1964)

-

X = ZZ&‘;&;

i=1 j=I

=

where n = number of cases:; & = critical space distance; T = critical time distance

i | if the distance between cases i and j <9
a.. = 4 .
v 0 otherwise
r & = - " [
I if the distance betweencasesi and j<7t
()  otherwise




Significance Test 1: Monte Carlo Simulation

The times of occurrence of the health events are distributed randomly across the case locations. This is another way of saying
the time distances between pairs of cases are independent of the spatial distances between pairs of cases.

Pairs of cases near in space tend to be near in time.

Monte Carlo significance test

0 The null hypothesis states that the times of occurrence of
the health events are distributed randomly across the case
locations.

0 This procedure is accomplished a fixed number of times,
and the reference distribution is constructed by calculating
X each time from the newly randomized data. The
probability value is the proportion of the upper right hand
tail of the reference distribution whose X values are as
large or larger than the test statistic.




Significance Test 2: Chi-squared Statistic

A 2 x 2 contingency table is used which classifies pairs
of cases as near or far in both space and time, for a total

of four possible outcomes.

SPACE
Close Not Close
Space and Time Time Only
Close
TIME
Space Only Mot Close
MNot Close

TR S AT G AP
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Temporal Distances
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Logical Structure of Knox Index

Close
im Distance

Not close
in distance

where N =0

S, =

2

W

3

4

Close in time

Notclose in time

0, 0, S,
03 04 SE
T 0, +0;+ 0, N = Total Number of Pairs
0, + 0,
0, + 0,
0, + 0,
0, + 0O,



Observed vs. Expected Frequencies

Observed

Close
in Distance

Not close
in distance

Close in time

Notclose in time

0, S,
0, S,
S, N
Expected
0, + O,

Close
in Distance

Not close
in distance

where L, =

e [

E
E
E

4

Close 1in time Not close in time

2 E,

S, *S,/N
S, *S,/N
S,*S,/N
S,*S,/N




Chi-square Statistic

The difference between the actual (observed) number of pairs in each cell and the
expected number 1s measured with a Chi-square statistic (equation 9.1).

Iz = D) e with 1 degree of freedom




‘ How to decide the degree of “close”?

Close in time Not close in time
Close
in Distance 0, 0, S,
Not close
in distance 0, 0O, S,
S, S. N

Methods for Dividing Distance and Time

In the CrimeStat implementation of the Knox Index, the user can divide distance
and time interval based on the three criteria:

1. The mean (mean distance and mean time interval). This 1s the default.

-2

The median (median distance and median time interval)

3. User defined criteria for distance and time separately.



Spatial-temporal patterns .
of the Sample data .

Time of

Occurrence
1.3

+ 4.7

s 5-12

& 14- 17

@ 12- 21




The Contingency Table

"Close" time 8.66667 days

8.833z27 m

"*lose™ distance

| Close in spaceil) | Not =2lose in space(0) |

————————————————————— s c T T

“lose 1n time (1) | 38 | o | 38

Not «lose in time(0) | a | 28 | 28

————————————————————— T e T B
| a8 | 28 | B A

_____________________ +____________________+_______________________ e e e e e e e e e o o = o o

Close in time{l) | 21.87879 | 16.12121 38.00000

Not clase in time{d) | 16.12121 | 11.87879%3 28.00000

_____________________ +____________________+_______________________ e e e e e e e e e o o = o o
| Je.00000 | 28.00000 Ge. 00000

Chi-sguare . .........: 6600000

P wvalue of Chi-sguare: 0.00010



R Functions for Knox Test

KnoxM.test<—function(x,y,time,dell,del?,Nrep)

ARGUEMENTS
X : a vector of x-coordinates of case
i a vector of y-coordinates of case
time : a vector of observed times
dell : a measure of closeness in space
del2 : a measure of closeness in time
Nrep : The number of Monte Carlo replications, e.g., 999, 9999
VALUES
Knox.T : test statistic
Freq : a vector of simulated test statistics under the null

Simulated.p.value : simulated p-value




R code

source("ST functions.R")

PT3 <— readOGR(dsn = "spacetime", layer = "point3",
encoding="big5")

head(PT3@data)

xcoord<—PT3@dataSX
ycoord<—PT3@dataSY
time<—-PT3@dataSDAYS

outl<—KnoxM.test(xcoord,ycoord,time,8.8,8.6,99)
outl



R code: Results

= ouUtl
tKnox. T
[1] 38

$Freq
[1] 20 23 24 21 23 31 21 24 23 22 24 19 20 22 19 23 23 21 24 20 24 23 25 21 20 23 25
[28] 22 21 22 22 21 26 24 19 21 20 17 23 21 22 24 20 21 20 20 23 24 24 23 23 21 22 22
[55] 23 21 23 19 22 20 21 19 23 22 25 23 26 22 21 21 22 21 24 23 22 21 22 25 23 22 22
[82] 21 21 22 24 24 19 28 25 27 27 20 26 21 20 25 22 21 21 38

$simulated. p. value
[1] 0.01

hist(outlSFreq, freq=F) Histogram of out1$Freq

lines(x=outlSKnox.T, y=0.2,
col="red", type="h")

1 —

| | | |
20 25 30 39

Density
000 010 020
|

out1$Freq




Application

Knox Index for Baltimore County Vehicle Thefts
Median Split
N =1,855 with 1,719,585 comparisons

95 Percentile

Actual Simulation Approx.
Month Chi-square Chi-square P
January 0.26 6.95 n.s.
February 0.00 6.61 n.s.
March 0.00 6.86 n.s.
April 0.50 6.56 n.s.
May 1.04 7.25 n.s.
B T8 1Y~ RV S 002 e TS
 July 9.96 9.05 05
: August 5.91 3.535 05 :
hr::pt e O A gy ——— o
SOCtObET 333 e S .S
: November 10.79 8.91 01
et e et GG £ gy e,

All o 1996 8.60Y 41.89 n.s.



Problems with the Knox Index

Subjective. different results can be obtained by varying the
cut-off points for distance or time.

Not incorporate the changes of population-at-risk (assume that
the population size does not change over time)

Difficult to interpret

o the observed and expected frequencies could occur in any
cell or any combination of cells .

o Finding a significant relationship does not automatically
mean that events that were close in distance were also close
in time; it could have been the opposite relationship. (using
Chi-square test)

However, a simple inspection of the table can indicate whether
the relationship is as expected or not.



2. Concept of Mantel Test (1967)

= Mantel's statistic is the sum, across all case pairs, of
the time distances multiplied by the spatial

distances.

N: Number of cases.

{;: Distance between cases i and j in time.
di;: Distance between cases i and j in space.
d*, d': Average space and time distances.
Ss, 5. Standard deviations of the space and time distances.
Z: Test statistic, also called the Mantel product, Z =3 . Z;-l idij.

L] t
l ZH H (d J )(dij - Jt)

(N2 — N — 1)~i=1 s, s

r: Standardized Mantel statistic, r =



Mantel Test (1967)

The times of occurrence of the health events are distributed randomly across the case locations. This is another way of saying
the time distances between pairs of cases are independent of the spatial distances between pairs of cases.

Pairs of cases near in space tend to be near in time.

L -
Z=),2,54

1=l j=l

s; is the distance between i and j in space

t; is the distance betweeniand j in time

N is the number of cases




Reciprocal transformation

For a contagious diffusion, we expect the small
space and time distances to be correlated, but not
the large distances. Mantel therefore recommended
the use of the reciprocal transformation (d' = 1/(C +
d)) to reduce the effect of large space and time
distances. Here Cis a constant and d is the distance
to be transformed. Selection of the constant Cis a

matter of judgment and is subjective.



Mantel test statistic

The Mantel test statistic is

] R fl
T=3% 2 aja; (7.22)
i=1j=1
where aﬂ and -_’IE} denote the clinal type measures of closeness in space and in time,
respectively, and are given by
1
)
ij
1
T T
4G =T (a; =0) (7.24)
i

and ¢ and ¢> are unknown parameters and have to be prespecified by the user. The
expected value of T is given by (7.17).




Mantel Test Pearson’s Correlation ({§3%)
cov(X,Y) = E[(X — px)(Y — py)]

B[(X — px)(Y — py)]
oxX0y

(Mantel and Bailar, 1970)

PXY =

Resolves some of the problems of the Knox Index

Fit TEd & TERE ) iR
NN
T= 2 2(X, - MeanX)(Y, - MeanY)  X: distance

i=1j=1 Y: time interval

Standardized Mantel statistic
| N N

r= ——o 2 2 (X, - MeanX)/S, * (Y, - MeanY)/S,
(N-1)  i=1j=1



Space-Distance

‘ Association between Space and Time
(7% 1-2)
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Application

Mantel Index for Baltimore County Vehicle Thefts

Simulation Simulation Approx.
Month r 2.5% 07.5% p-level
January - 0047 -0.033 0.033 n.s.
February - 0023 -0.037 0.042 n.s.
March -.0245 -0.032 0.039 n.s.
April 0.0077 -0.040 0.041 n.s.
May 0.0018 -0.038 0.043 n.s.
Jdune 0.0043......-0.035 . 0041 . ns...
July 0.0348 -0.034 0.033 025
August 0.0544 -0.034 0.035 01
September OO TE T 7 N
LQotoher.......... 0.0409.............. L0330 (L043................ N..S....
November 0.0630 -0.042 0.040 001
T I T T N E F e
All of 1996  0.0015 -0.009 0.010 n.s

Median Split
N =1,855and 1,719,585 Comparisons




Limitations of the Mantel Index

Pearson-type correlation coefficient &= @5 85 gacmin o

o Extreme values of either space or time could distort the
relationship, either positively, if there are one or two
observations that are extreme in both distance in time
interval, or negatively, if there are only one or two
observations that are extreme in either distance or in time

interval.
Less intuitive
o the correlations tend to be small

The sample size needs to be fairly large to produce as table

estimate
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Summary: Deficiencies of Knox and Mantel tests

First, selection of an appropriate data transformation for the
Mantel test, and of critical distances for Knox’s test, is
subjective

Second, the Knox space critical distance is invariant with
changing population density.

Third, the model underlying Mantel’s test is linear, but the
relationship between space and time distances for almost all
disease processes are expected to be non-linear.

Fourth, Mantel’s statistic is the sum of the products of the
space and time distances, which will cause large distances to
have undue influence on the statistic.

Finally, results of the Knox and Mantel test vary as population
density changes.
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‘ Labs: Sample Data (Patients.csv) Patients.rar

Table 7.1 Kaposi's sarcoma in the West Nile district of Uganda. Locations of the homes and the
date of onset of the 22 patients (data from McHardy ef al., 1984).

Coordinates (km)
Case No. Eastings Northings Date of onset

1 266.8 3343 1958
2 3044 379.3 1959
3 2655 315.0 1960
4 265.0 314.0 1960
5 2642 323.0 1962
6 288.7 265.2 1962
7 290.2 294.3 1964
8 2656 318.2 1964
9 263.7 3444 1965
10 271.3 333.5 1966
11 2674 3444 1968
12 2674 3444 1968
13 276.5 3446 1968
14 260.2 358.2 1971
15 264.0 296.8 1972
16 263.8 3443 1972
17 300.5 373.0 1972
18 270.8 326.1 1973
19 258.7 3448 1974
20 2827 3223 1974
21 2653 3149 1974
22 2853 261.0 1974

Tango T. Statistical Methods for Disease Clustering, Springer, 2010.




R Functions for Mantel Test

Mantel.test<—function(x,y,time,cl,c2,Nrep)

ARGUEMENTS
X - a vector of x-coordinates of case
W : a vector of y-coordinates of case
time : a vector of observed times
cl a constant for Mantel's measure of closeness in space
c2 a constant for Mantel's measure of closeness in time

Nrep : The number of Monte Carlo replications, e.g., 999, 9999

VALUES
Mantel.T : test statistic
Expected : expected value of test statistic

Simulated.p.value : simulated p-value
Freq : a vector of simulated test statistics under the null




Labs: R codes

# Knox Test

dell <— 2:del2<-0

Nrep <— 999

out<— KnoxM.test(x,y.time,dell,del?,Nrep)
hist(outSFreq)

out$Simulated.p.value # p=0.029

# Mantel Test

cl<—1:c2<-1/5

Nrep<-— 999

out<—- Mantel.test(x,y,time,cl,c2,Nrep)
hist(outSFreq)

outSMantel.T # T=12.1751
out$Simulated.p.value # p=0.032



3. Concept of Jacquez's k-Nearest Neighbor
test (k-NN)
The test statistic, J,, is the count of the number of
case pairs that are nearest neighbors in both
space and time. When space-time interaction
exists J, will be large, since nearest neighbors in

space will also tend to be nearest neighbors in

time.



Jacquez's k-Nearest Neighbor test (k-NN)

1 1
—_ 5 I
Jp = E E R

i=1 j=I

where: n = number of events; NN = nearest neighbor; k = the set of events as near or
nearer to an event than the kth NN

| ifevent jis a k NN of eventi in space

n., =< .
ik () otherwise

| ifeventjis a k NN of eventi intime

ro__
Wik = 3 ¢ :
() otherwise
H Whether cases are nearest neighbors in space is independent of whether they are nearest neighbors in time

H Mearest neighbors in space tend to be nearest neighbors in time.




Application

Jacquez Test Resulis Comparison (Jk)

(a) 1800
1500 4
1400 4
1300
1200
1100
1000
200 -
800
700 -
600
500 -
400
300 -
200 -
100 -
0 - T T T T T

0 2 4 6 a 10 12 14

Number of Nearest Neighbors (k)

Number of Space-Time Crime Event Pairs

—i— Burglary —&— Assault —®— Robbery

Grubesic and Mack (2008)



R Functions for Jacquez's k-Nearest Neighbor test

Jacquez.test<—-function(x,y,time,k,Nrep)

ARGUEMENTS
X .
F_ -
time :
k :
Nrep :

— Ao

h

VALUES
Jacquez. T
Expected
Simulated
Freq

vector of x-coordinates of case

vector of y-coordinates of case

vector of observed times

of k nearest neighbors

e number of Monte Carlo replications, e.g., 999, 9999

: test statistic
: expected value of test statistic
.p.value : simulated p-value
- a vector of simulated test statistics under the null




Labs: R code

k<— 1; Nrep<-— 999

time<—-time+runif(22)/100 #small random numbers were added
out<- Jacquez.test(x,y.time,k,Nrep)

out$SJacquez.T #J = 0.5

out$SExpected # Exp[J]= 0.5238095

out$Simulated.p.value # p= 0.575

Table 7.9 Jacquez’s k-NN approach with Monte Carlo p-value with Nrep = 999 for 22 patients
with Kaposi’'s sarcoma in the West Nile district of Uganda (data from McHardy er al., 1984).

k nearest neighbors

I 2 3 4 3 6 7 8 9 10

T 05 25 40 80 135 200 260 345 430 525
Expected 0.52 2.09 4.71 B8.38 13.09 18.85 25.66 33.52 42.42 52.38
Monte Carlo p 0.575 0.396 0.678 0.582 0.419 0.334 0.431 0.320 0.378 0.438




Jacquez's k-Nearest Neighbor test (k-NN)

(iT% 1-3) Data: point3.shp
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Another k-NN test (k-specific test)

J, are not independent because all pairs of events included in
smaller neighborhood definitions, k, are also included in
subsequent, larger values of k.

For example, as k increases from three to four, all event pairs that
were included in k = 3 are also included in k = 4. Thus, larger values
of k suggest increased levels of spatio-temporal interaction, which
is not surprising given the increased likelihood of becoming a
space—time neighbor as the number of events increase in the space
and time matrices.

To account for this statistical issue Jacquez (1996) provides a k-
specific test statistic for measuring time—space interaction beyond
that found for the k-1 nearest neighbors:
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k-specific Test

.ﬁ.f}; =Ji — Ji

The index tracks any increases in the number of space—time
nearest neighbors as k is increased and unlike the J,, the

index are statistically independent.

In other words, if one was to change the neighborhood
definition by increasing the number of neighbors under

consideration (e.g. three to four), the index monitors these

changes for significance.



Application (cont’d)
I Delta (Jk) Test Results (Robbery) I

(b} 250 1

1 0.95
= + 09
@ e TO85
- 200 T © to0a8
< + 0.75
ﬂ 2
E . 107
k- - ' + 0.65
§< 1s0q v tos
So ) T 0.55

| ™ ...
5 8 ‘ [%°
g5 - 1 0.45
EL 1007 ’ 104
Z - + 0.35
E T03
& ' T 0.25
5 50 + . t+02
€= .
o .- 1 0.5
. 101
e
T 0.05
0 — e e = - - 0
4 5 B 7 8 9 10 1 12 13

oy - 2RI B & Number of Nearest Neighbors (k)

=« % ==Change —&— P(Djk)

P(Delta Jk)

It means robbery begins to cluster at a different spatio-temporal scale (k=3).
Grubesic and Mack (2008)
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Applications: Implications

Results: burglary: k=1; assault: k=2: robbery: k=3

Burglary events have significant spatio-temporal interaction
with their first-order nearest neighbors. It suggests that
closeness in space and time exists between events.

This can lead to an initial burglary at one property, followed by
subsequent burglaries at neighboring properties.

Predatory crime often occur near bars, taverns, bus stops and
homeless shelters. These types of facilities have a different
spatial distribution than residences, and thus, the crimes
committed in these locations have unique temporal

characteristics

Grubesic and Mack (2008)


Angus
下劃線


4. Mapping the Areas with Spatial-temporal
Interaction: Space-time Linkages

714
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Each point of the space-time scatter plot means ?




Spatial Patterns of Space-time Links
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Analyzing the patterns of
spatial-temporal diffusion of an epidemic

Population Movement and Vector-borne Disease Transmission:
Differentiating Spatial-temporal Diffusion Patterns of
Commuting and Non-commuting Dengue Cases. Annals of the

Association of American Geographers, 102(5):1026-1037

The Epidemic in Tainan City, 2007

Cumulative Incidence

2008



Hypothesis: Diffusion through Dengue-
infected Commuter vs. Non-commuters

Through Through
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Identifying Space-time Clusters
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Space-time Links




‘ Spatial Patterns of Space-time Links




Network Formation (An Example)

Pairs of selected space-time links

Space Time
(km) (weeks)

Pair# Node ID Node ID

(1) B A 0.7 1

2) B C 1.2 1.5
3) B D 1.1 0.8
(4) B E 1.3 1.1
(5) B F 1.5 1.6
(6) G F 1.8 0.7




‘ Identifying the origins of infection

(a) Non-commuters (b) Commuters

Degree Degree
Centrality y - Centrality
- 0-4 / - 0-32
* 5.12 - v i S
13-26 . “ v 57-98
® 27.%0 0 VI S o, [ * 99-127

81-100

128 .175




5. Space-time K-function: Concepts

Traditional (spatial) K-function (Ripley, 1977)

1
K(h)=—E(#(events w/in distance h of randomly chosen event)
/L

Space-time K-function (Diggle, et al. 1995)

K(h,t)= %E (#(events w/in distance h and tume t of randomly chosen event)



Space-time K-function: Equations

- A 4(d.
Spatial K-function Kp(d) = —EZ Z k
i JFI ij'
: - T
Temporal K-function Ky (t) = —EZ Z
i jFI ij'
Space-time K-function K(d £) = —Z Z a ()1 (¢
WV




Measuring Space-time Interaction
A BEirEl: P(ANB)=P(A)- P(B)

No Space-time Interaction:  K(d,t) = Kp(d)K(t)

Performance Indices: _
Residuals:

s ]

D(d.t) = K(d, t)—K, (d)K(t)

Relative function:

)

Dy(d.t) = D(d, t) / {Kp(d)K(t)}




Some stylized space—-time distributions
(1) 2) 3)
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3) D(d.t) Do(d.t)
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Each year individually produces a visual impression of clustering; however,

looking at the whole map without distinguishing between the different time

periods the visual impression is that of randomness.



Testing Statistical Significance

1. standardized residuals
Standard error

R(d,t) = D(d.t) /

In the absence of any space—time interaction, these residuals have zero
expectation and a variance equal to one and approximately 95% of the

values of R(d,t) would lie within two standard errors (French et al., 2005).

2. Monte Carlo testing

Actual observed sum of D(d,t) overall d and t. If the observed sum is ranked
above 95 out of 100 simulated values then the probability that the observed

space-time interaction occurred by pure chance is less than 5%..



Application: ICT industries in Rome (Italy)
1920—2005 Arbiaa et al (2010)

Year of Number of firms
establishment
(1) Electronic and (2) Information (3)ICT=(1)+(2)
Communication Technology
1920-1960 5 0 5
1961-1970 5 1 b
1971-1980 4 10 14
1995, 1981-1990 15 30 45
widespread =» 1991-2000 29 37 66
2001-2005 8 25 33

Internet Total 66 103 169




Spatial-temporal distribution of ICT

industries

Symbol

QD <O o e

Legend
Years of establishment
1920-1960
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1981-1990
1991-2000
2001-2005




Space-time K-function

D(d,)

This shows that the underlying concentration phenomenon tends to drive
clusters with a small spatial magnitude (circles with radius of 1 mile) and where

the firms are temporally correlated in terms of the year of establishment.



Standardized residuals and Monte Carlo
testing

30
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Spatial-temporal distribution of
Information Technology sector

Legend
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‘ Space-time K-function

D(d,t) Dq(d,t)
(b) _
‘ |‘.\.i:u \. g\' W

spatial-temporal
segregation

D,(d,t) displays a rather less marked spatial clustering and a negative time cluster.




Standardized Residuals

Standardized residuals and Monte Carlo
testing
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Space-time clustering situation of the ICT
sector before and after widespread

internet availability

Characteristics Before widespread
internet (before 1995)

After widespread
internet

Spatial lag 1 mile
Temporal lag 1 year
p-value Monte Carlo test 0.011

% of estimated residuals out of 2 SE  40.1%

No space-time
interaction

0.592
0.50%




Application: RVF disease transmission in
2008-2011

Metras R, et al (2012)

Rift Valley fever (RVF) is a zoonotic arbovirosis for which the

primary hosts are domestic livestock (cattle, sheep and goats).

Mechanisms for short and long distance transmission have

been hypothesized, but there is little supporting evidence.

We investigate the presence of a contagious process in order to
generate hypotheses on the different mechanisms of

transmission.



‘ Disease data in time and space

Table 1. Number of affected farms (%) per outbreak wave, by on-farm species.

Number of affected farms (%)

On-farm species 2008 2009, wave 1 2009, wave 2 2010 2011 All years
CA 21 (87.5) 18 (90.0) 6 (31.8) 62 (13.2) 19 (15.3) 126 (19.1)
SR 3(12.5) 2 (10.0) 3 (15.8) 232 (49.3) 100 (80.6) 340 (51.7)
SR+CA - - 10 (52.6) 177 (37.8) 5 (4.0 192 (29.2)
Total per year (100%) 24 20 19 471 124 658

SR=small numinants, CA =cattle.

g;_

25

15
|

Daily no. of affected farms

[N i1 {8 | i ! L]

R T T T | T I Tl 1
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‘ Results D, (d,t): Excess Risk
Do(d. t) = D(d, t) / {Kp(d)Kr(t)}

Table 3. Excess risk attributed to the space-time interactions (D,(s,t)), and corresponding p-values, by wave.

Separating distances Results

Year (wave) Time (60 days) Space (300 km) D,ls.1 Upper time window Upper space window pvalue

2008 () 2 days 5 km =2 9 days 15 km 0.091
=1 35 days 50 km

2009 (1) 5 days 10 km >3 1 day 20 km 0.008
=2 11 days 30 km
=1 31 days

2009 2) @ 5 days 10 km =2 . : na*
=1

2010 2 days 5 km >3 1 day 5 km <0.001
=2 3 days 5 km
=>1 13 days m

20M 2 days 5 km =3 3 days 15 km 0.050
=2 5 days 20 km
=1 13 days 35 km

\
long-distance transmission

*n.a. not applicable: D,ist) values were below unity.
doi: 10.1371/journal. pntd 0001 808.t003




Plot of excess risk attributed to space-
time interactions

long-distance transmission




Findings and discussions

The study detected the presence of an additional
spatiotemporal process, with RVF potentially spreading to
distances up to 40 to 90 km, within about 2 weeks.

This appearance of long-distance spread could be explained by
the existence of several RVF virus emergences. This suggests
that RVF spread over distances larger than the assumed range
of active vector dispersal could be explained by the movement

of domestic or wild viraemic and therefore infectious animals.

Other mechanisms of long-distance spread could also be
incriminated, such as wind-borne vector dispersal.
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Figure 8. Monthly variation in the patients’ density for the year 2004.




Space-time K-function

Figure 9. The space-time K-function K (A, ¢) on the left and the test for space—time
interaction D(h, t) on the right.




Findings

D(h,t) = K(h,t) — K(h) «K(). (9)

Figure 9 to the right shows the change in the value of D(h, t) with time and distance
variation. A clear space—time interaction 1s noticed at short distances between 1 and
10 km, with a peak at 3 km. This comes very close to the results obtained with the
monthly variation of the space K-function, where clusters were noticed in the
[-2 km range. Along the time axis, it can be observed that the surface reaches a
maximum at approximately 180 days but remains very significant between 50 and

200 days. There 1s a clustering of patients who live within a small distance from one
another (<5 km) and visit the hospital within 67 months from one another. This coin-

cides with the cumulative distribution reported in figure 4, where it was observed that
most patients were originating from about 4.5 km of the hospital. These results are an

evidence of a diffusion process taking place, where a focal point in the vicinity of the
hospital originates, and as time goes by, it begins to radiate outward spreading to
neighborhoods with similar characteristics to the intended service area.




‘ R Functions for Space-time K-function

ussee  |1brary (splancs)

stkhat (pts, times, poly, tlimits, =, tm)

Arguments

pts A set of points as defined in Splancs

times Avector of imes, the same length as the number of points in pts
poly A polygon enclosing the points

tlimits Avector of length 2 specifying the upper and lower temporal domain.

s Avector of spatial distances for the analysis.
tm Avector of times for the analysis
Value

Alist with the following components is returned:

s, t The spatial and temporal scales
k= The spatial K-function
kt  Thetemporal K-function

kst The space-time K-function




R code: Space-time Data

library (splancs)

source("ST functions.R")

ptdata <— read.table("pts_data/Patients.csv", header=TRUE,
Sep:-",")

Pts_Loc <— as.points(ptdatal,2], ptdatal,3])
Pts_time <- ptdatal.4]

ptbnd <- read.table("pts_data/Paitents_BND.csv", header=TRUE,
Sepz",")

Pts_BND <- as.points(ptbndl[,2], ptbondl[,3])
polymap(Pts_BND)
pointmap(Pts_Loc, add=T)



Mapping Space-time Data
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R code: Space-time K function

## Plotting DO(s,t)
kapl<-— stkhat(Pts_Loc, Pts_time, Pts_BND, c(1955,
1980),seq(1,5),seq(0,4))

gl<- matrix(kapliks) D(d, t) = K(d, t)—K,(d)K(t)
g2<— matrix(kaplSkt)
glg<— gl %*% t(g?)
turD<— kaplSkst — glg?

persp(kaplSs, kaplSt, turD, theta=-30, phi = 15, expand = 0.5,
x1im=c(0,5), ylim=c(0,4), xlab="spatial distance", ylab="temporal
distance", zlab="D", ticktype ="detailed" )

turD0<-— kaplSkst/glg2-1.0

persp(kaplSs, kaplSt, turDO, theta=—30,phi = 15, expand = 0.5,
x1lim=c(0,5), ylim=c(0,4), xlab="spatial distance", ylab="temporal
distance", zlab="D0", ticktype ="detailed" )

Dy(d,t) = D(d, t) / {Kp(d)K, ()}



Results: Distribution of Do




Standardized residuals A A , Standard error
R(d.t) = D(d.t) ,z

Standard error for space-time clustering

Description

Computes the standard error for space-time clustering.

Usage

zt=ecal (pts, times, poly, tlim, =, tm)

Arguments

pts A set of points, as defined in Splancs.

times Avector of imes, the same length as the number of points in pt=s
poly  Apolygon enclosing the points

£lim  Avector of length 2 specifying the upper and lower temporal domain.

5 Avector of spatial distances for the analysis

tm Avector of times for the analysis




R code: standardized residuals R(s,t)

Standard error
R(d,t) = D(d,t) ;

# plotting standardized residuals R(s.t)

se<— stsecal(Pts_Loc, Pts_time, Pts_BND,c(1955,
1980),seq(1,5),seq(0,4))

Res<— turD / se

plot( glg?, Res ,ylim=c(-3, 6), xlab="K1l(s)K2(t)",
ylab=" standardized residuals R(s,t)")

abline(h=c(—2,2), 1ty=2)



standardized residuals Ris t)

Results: Standardized residuals R(s,t)
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