空間分析 (Geog 2017) | 台大地理系 Spatial Analysis | NTU Geography

# 熱區分析 Hot spot analysis (Localized spatial analysis)

#### 授課教師:溫在弘 E-mail: wenthung@ntu.edu.tw

# 熱區分析的空間統計方法:第一部分

- Host-spot analysis (for polygon data)
  - Local Moran's I index
  - Local G-statistic (Gi\*)
- Issues of multiple testing for hot-spot analysis
  - Bonferroni correction
  - □ False discovery rate (FDR)

## **Textbook Chapter**

#### TEXT\_Local.Stat.pdf

Chapter 8

#### Local Statistics

#### CHAPTER OBJECTIVES

In this chapter, we:

- Explain the concepts underlying the emerging array of *local statistics*
- Account for the relatively late arrival of local statistics on the spatial analytic scene
- Review the various approaches that can be used to construct *localities* for the development of local statistics
- $\bullet$  Discuss how the popular Getis-Ord family of G statistics are calculated and interpreted
- Outline the local version of Moran's I statistic
- Explain why inference based on local statistics is challenging and describe current approaches to dealing with the difficulties
- Provide an overview of the increasingly popular method geographically weighted regression
- Explain how many other spatial analysis methods can be considered as local statistics even if this was not the intent behind their original development

#### **Chap 8: Local Statistics**

p.215 - p.223

8.1 Introduction: Think geographically, measure locally

8.2 Defining the local

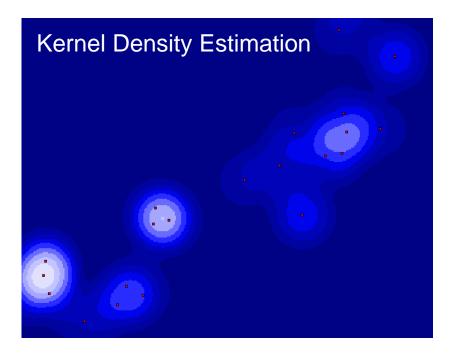
8.3 An example

8.4 Inference with local statistics

# Identifying hot spots

#### Point data

#### Polygon data





## **Recap: Global Moran's I**

相關係數 
$$\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

自相關係數  
Moran's I 
$$I = \frac{N}{W} \frac{\sum_{i} \sum_{j} w_{ij} (x_i - x) (x_j - x)}{\sum_{i} (x_i - \bar{x})^2}$$

#### where

- N is the number of cases
  - X is the mean of the variable
  - X<sub>i</sub> is the variable value at a particular location
  - X<sub>i</sub> is the variable value at another location
  - $W_{ij}$  is a weight indexing location of i relative to j
- Applied to a continuous variable for polygons or points

$$\begin{array}{l} (x1-\overline{x}) (x2-\overline{x}) + \\ (x2-\overline{x}) (x1-\overline{x}) + (x2-\overline{x}) (x3-\overline{x}) + (x2-\overline{x}) (x4-\overline{x}) + \\ (x3-\overline{x}) (x2-\overline{x}) + (x3-\overline{x}) (x4-\overline{x}) + \\ (x4-\overline{x}) (x2-\overline{x}) + (x4-\overline{x}) (x3-\overline{x}) \end{array} \right)$$

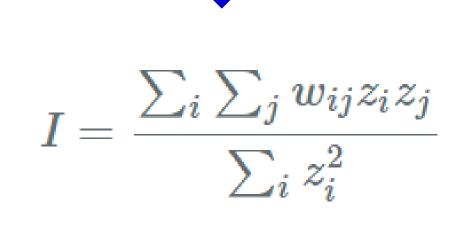
$$(x1-\overline{x})^2+(x2-\overline{x})^2+(x3-\overline{x})^2+(x4-\overline{x})^2$$

## Using row-standardized spatial weights

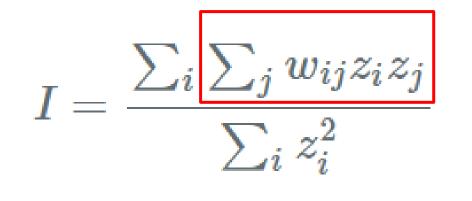
$$I = \frac{N}{W} \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

$$I = \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

$$I = \frac{\sum_{i} \sum_{j} \frac{w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\frac{S_i \times S_j}{\sum_{i} \frac{(x_i - \bar{x})^2}{S_i \times S_i}}} Z = \frac{X_i - \overline{X}}{S}$$



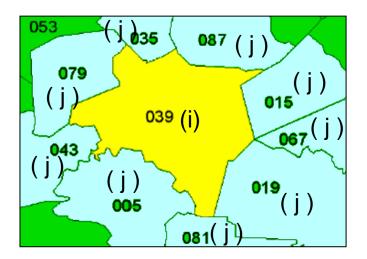
#### 1. Local Moran's I (Local Indicator of Spatial Association, LISA)



$$I_i = rac{\sum_j w_{ij} z_i z_j}{\left[\sum_i z_i^2
ight]}$$
 a constant for each i

#### Local Moran's I (LISA)

$$I_{i} = z_{i} \sum_{j} w_{ij} z_{j}$$
$$z_{i} = (x_{i} - \overline{x}) / \delta$$



- High LISA value
  - Cluster of similar values (can be high or low)
- Low LISA value
  - Cluster of dissimilar values

## **Test of Statistical Significance**

The  $z_{I_i}$ -score for the statistics are computed as:

$$z_{I_i} = \frac{I_i - \mathbf{E}[I_i]}{\sqrt{\mathbf{V}[I_i]}} \tag{3}$$

(4)

where:

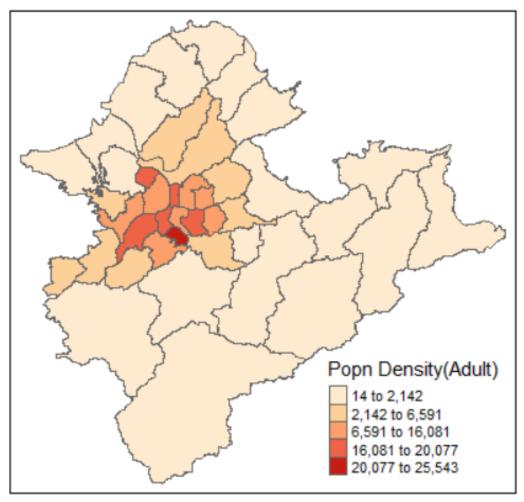
$$\mathrm{E}[I_i] ~=~ -rac{\sum\limits_{j=1,j
eq i} w_{ij}}{n-1}$$

$$\mathbf{V}[I_i] = \mathbf{E}[I_i^2] - \mathbf{E}[I_i]^2 \tag{5}$$

n

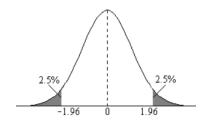
#### Lab: Local Moran's I

#### 年齡15-64的人口密度 (/km<sup>2</sup>)



#### Lab: Local Moran's I in R

# using localmoran() function

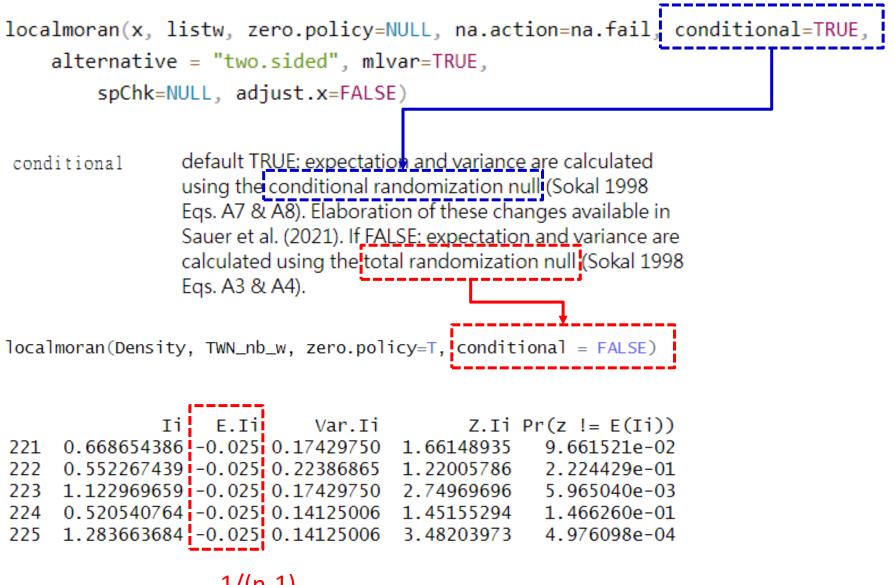


→ greater; less; two.sided

| <pre>&gt; LISA.Popn &lt;- localmoran(Density, TWN_nb_w, zero.policy=T, conditional = TRUE) &gt; LISA.Popn</pre> |             |               |              |            |                |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------|------------|----------------|--|--|--|
| / L1                                                                                                            |             | E.Ii          | Var.Ii       | Z.Ii       | Pr(z != E(Ii)) |  |  |  |
| 221                                                                                                             | 0.668654386 | -3.779349e-02 | 2.676102e-01 | 1.36561673 | 1.720593e-01   |  |  |  |
| 222                                                                                                             | 0.552267439 | -2.314840e-02 | 2.139495e-01 | 1.24401656 | 2.134935e-01   |  |  |  |
| 223                                                                                                             | 1.122969659 | -5.543082e-02 | 3.853030e-01 | 1.89841748 | 5.764111e-02   |  |  |  |
| 224                                                                                                             | 0.520540764 | -1.030478e-02 | 6.075569e-02 | 2.15364779 | 3.126780e-02   |  |  |  |
| 225                                                                                                             | 1.283663684 | -2.499016e-02 | 1.451527e-01 | 3.43488554 | 5.928042e-04   |  |  |  |
| 226                                                                                                             | 1.275561091 | -6.572105e-02 | 4.518543e-01 | 1.99535859 | 4.600378e-02   |  |  |  |
| 227                                                                                                             | 2.310784759 | -5.639251e-02 | 3.170003e-01 | 4.20437007 | 2.618103e-05   |  |  |  |

LISA.Popn <- localmoran(Density, TWN\_nb\_w, zero.policy=T)

NorthTW\_sf\$z.li <- LISA.Popn[,4] NorthTW\_sf\$pvalue <- LISA.Popn[,5]



-1/(n-1)

#### **Total randomization null**

localmoran(Density, TWN\_nb\_w, zero.policy=T, conditional = FALSE) Ii E.Ii Var.Ii Z.Ii Pr(z != E(Ii)) 221 0.668654386 -0.025 0.17429750 1.66148935 9.661521e-02 222 0.552267439 -0.025 0.22386865 1.22005786 2.224429e-01 223 1.122969659 -0.025 0.17429750 2.74969696 5.965040e-03 224 0.520540764 -0.025 0.14125006 1.45155294 1.466260e-01 225 1.283663684 -0.025 0.14125006 3.48203973 4.976098e-04

Let the "total randomization hypothesis" be one under which all permutations of the observed data values on the locations are equally likely. For the total randomization hypothesis, the moments of  $I_i$  are derived in the Mathematical Appendix. The expected value of  $I_i$  is

$$E(I_i) = -w_i/(n-1) \tag{4}$$

where  $w_i$  is the sum  $\Sigma_j w_{ij}$  of all weights connected to (leaving) location *i*. A value of  $I_i$  above its expectation indicates a cluster of variates around locality *i* similar to each other and to the variate  $z_i$ . A value of  $I_i$  below its expectation signifies connected variates dissimilar to that at *i*. The formula for the variance  $V(I_i)$  was first derived by Anselin (1995), whose formula, slightly modified, is

$$V(I_i) = w_{i(2)}(n-b_2)/(n-1) + (w_i^2 - w_{i(2)})(2b_2 - n)/[(n-1)(n-2)] - [-w_i/(n-1)]^2.$$
(5)

#### https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.1998.tb00406.x

#### **Conditional randomization null**

| <pre>&gt; LISA.Popn &lt;- localmoran(Density, TWN_nb_w, zero.policy=T, conditional = TRUE)</pre> |               |              |            |                |  |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------|--------------|------------|----------------|--|--|--|--|
| > LISA.Popn                                                                                      |               |              |            |                |  |  |  |  |
| Ii                                                                                               | E.Ii          | Var.Ii       | Z.Ii       | Pr(z != E(Ii)) |  |  |  |  |
| 221 0.668654386                                                                                  | -3.779349e-02 | 2.676102e-01 | 1.36561673 | 1.720593e-01   |  |  |  |  |
| 222 0.552267439                                                                                  | -2.314840e-02 | 2.139495e-01 | 1.24401656 | 2.134935e-01   |  |  |  |  |
| 223 1.122969659                                                                                  | -5.543082e-02 | 3.853030e-01 | 1.89841748 | 5.764111e-02   |  |  |  |  |
| 224 0.520540764                                                                                  | -1.030478e-02 | 6.075569e-02 | 2.15364779 | 3.126780e-02   |  |  |  |  |
| 225 1.283663684                                                                                  | -2.499016e-02 | 1.451527e-01 | 3.43488554 | 5.928042e-04   |  |  |  |  |
| 226 1.275561091                                                                                  |               |              |            | 4.600378e-02   |  |  |  |  |
| 227 2.310784759                                                                                  | -5.639251e-02 | 3.170003e-01 | 4.20437007 | 2.618103e-05   |  |  |  |  |
|                                                                                                  |               |              |            |                |  |  |  |  |

The local Geary coefficient  $c_i$  is defined as

$$c_i = (1/m_2) \Sigma_j w_{ij} (z_i - z_j)^2,$$

$$E(c_i) = 2nw_i/(n-1).$$
 (7)

All terms in this expression have already been defined. The variance  $V(c_i)$  is

$$V(c_i) = [n/(n-1)](w_i^2 + w_{i(2)})(3 + b_2) - [2nw_i/(n-1)]^2.$$
(8)

#### https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1538-4632.1998.tb00406.x

# Local Moran's I in R: permutation test using localmoran\_perm() function

spChk=NULL, adjust.x=FALSE, sample\_Ei=TRUE, iseed=NULL,

no\_repeat\_in\_row=FALSE)

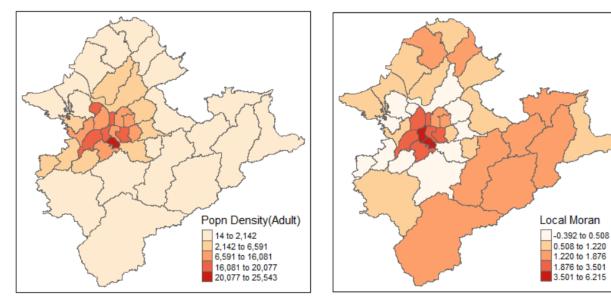
> LISA.Popn2 <- localmoran\_perm(Density, TWN\_nb\_w, zero.policy=T)
> LISA.Popn2

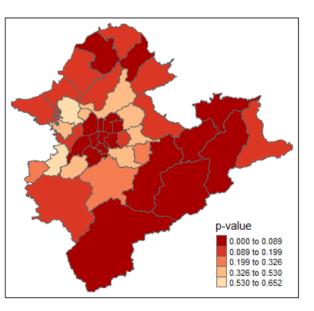
|     | Ii           | E.Ii          | Var.Ii       | Z.Ii        | <pre>Pr(z != E(Ii))</pre> | Pr(z != E(Ii)) Sim |
|-----|--------------|---------------|--------------|-------------|---------------------------|--------------------|
| 221 | 0.668654386  | -0.0669090328 | 2.856191e-01 | 1.37634251  | 1.687156e-01              | 0.160              |
| 222 | 0.552267439  | -0.0174631722 | 2.542451e-01 | 1.12990851  | 2.585148e-01              | 0.272              |
| 223 | 1.122969659  | -0.0417704487 | 4.427884e-01 | 1.75037432  | 8.005374e-02              | 0.120              |
| 224 | 0.520540764  | -0.0071149112 | 6.877795e-02 | 2.01199090  | 4.422090e-02              | 0.080              |
| 225 | 1.283663684  | -0.0512973853 | 1.656873e-01 | 3.27962397  | 1.039455e-03              | 0.008              |
| 226 | 1.275561091  | -0.0587890733 | 5.539305e-01 | 1.79284266  | 7.299809e-02              | 0.096              |
| 227 | 2.310784759  | -0.0661175265 | 3.418687e-01 | 4.06519747  | 4.799181e-05              | 0.004              |
| 228 | -0.031403199 | -0.0001949660 | 4.509088e-04 | -1.46968696 | 1.416466e-01              | 0.172              |
| 229 | 0.008059578  | -0.0097234513 | 1.902973e-02 | 0.12891084  | 8.974282e-01              | 0.960              |
| 230 | -0.001253596 | 0.0002142556  | 4.068078e-05 | -0.23013756 | 8.179849e-01              | 0.744              |
| 231 | -0.044515937 | -0.0069749599 | 1.977674e-02 | -0.26694894 | 7.895085e-01              | 0.752              |

#### R Lab: Local Moran's I in R

Population Density

#### Local Moran p-value (z-score for LISA)





# attr: Object Attributes

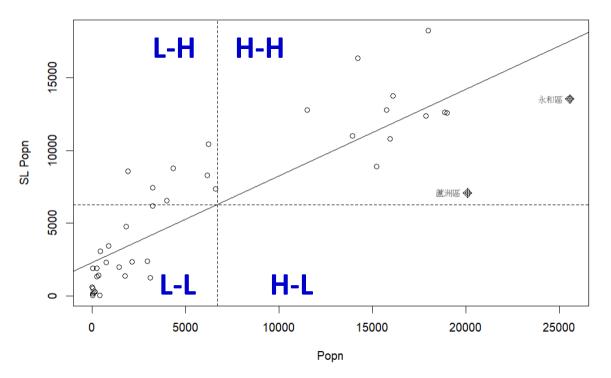
#### Description

Get or set specific attributes of an object.

attr(,"quadr") median mean pysal High-High High-High High-High 1 High-High High-High High-High 2 High-High High-High High-High 3 High-High High-High High-High 4 5 High-High High-High High-High High-High High-High High-High 6 High-High High-High High-High 7 8 Low-High High-High Low-High Low-High High-High Low-Low 9

#### **Moran Scatter plot and Local Moran**

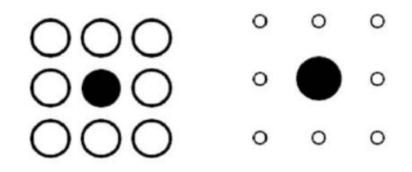
moran.plot (Density, TWN\_nb\_w, labels=IDs , xlab="Popn", ylab="SL Popn")



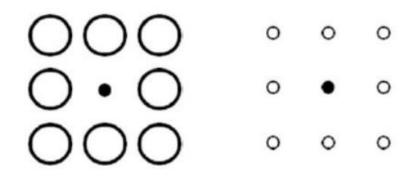
#### > quadr <- attr(LISA.Popn, "quadr")\$mean</pre>

> quadr

[1] High-High High-High High-High High-High High-High High-High High-High Low-High Low-High [10] Low-High Low-High Low-Low High-High High-High High-High High-High Low-Low [19] Low-High Low-Low Low-Low Low-Low Low-High High-High Low-High Low-Low Low-Low [28] Low-Low Low-Low Low-Low Low-Low LOW-LOW LOW-LOW Low-Low I OW-LOW LOW-LOW [37] Low-Low Low-Low Low-Low Low-Low LOW-LOW Levels: Low-Low High-Low Low-High High-High



a) High-high spatial cluster b) High-low spatial outlier

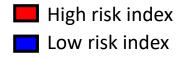


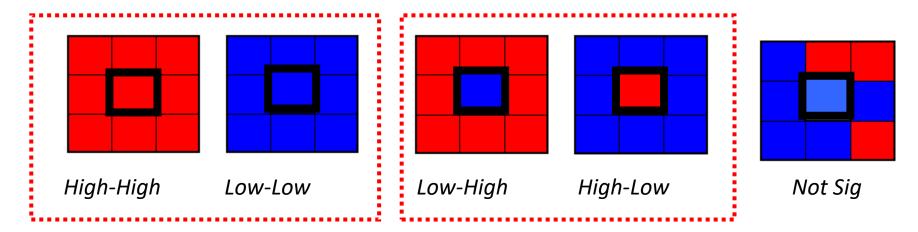
c) Low-high spatial outlier d) Low-low spatial cluster

Fig. 1-Sketch figure showing the relationship of a location and its neighbourhood: a) and d) spatial cluster; b) and c) spatial outlier; a) and b) hot spots; c) and d) cool spots.

Zhang et al., 2008

#### Local Moran's I (LISA)





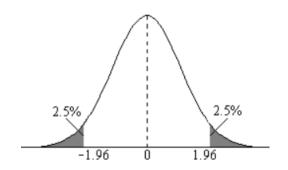
*High LISA value:* Cluster of similar values

*Low LISA value:* Cluster of dissimilar values

#### R code (new)

```
quadr <- attr(LISA.Popn, "quadr")$mean
quadr <- factor(quadr, levels = c(levels(quadr), "NoSig"))
NorthTW_sf$Type <- quadr
head(NorthTW_sf)
table(NorthTW_sf$Type)
```

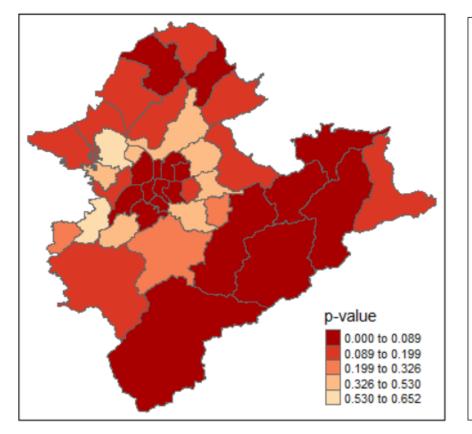
```
signif <- 0.05
quadr[LISA.Popn[, 5]> signif] <- "NoSig"
NorthTW_sf$Type <- quadr</pre>
```



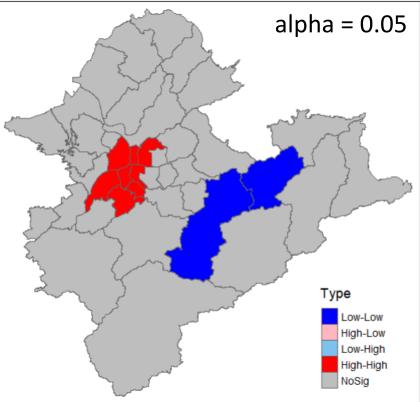
tm\_shape(NorthTW\_sf) + tm\_polygons("Type", palette = colors)

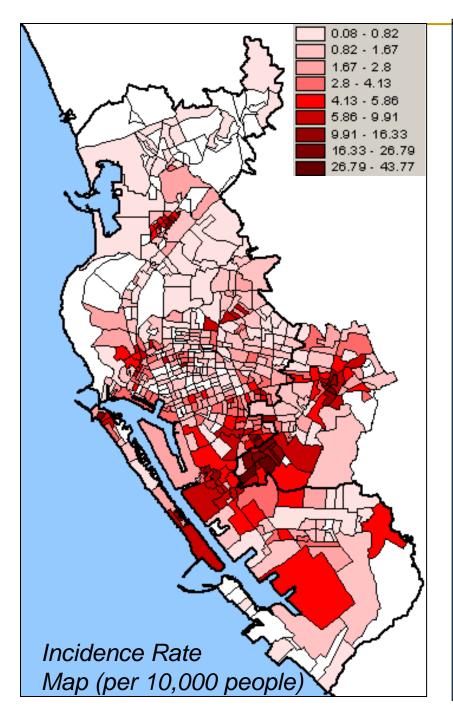
#### R Lab: Local Moran's I

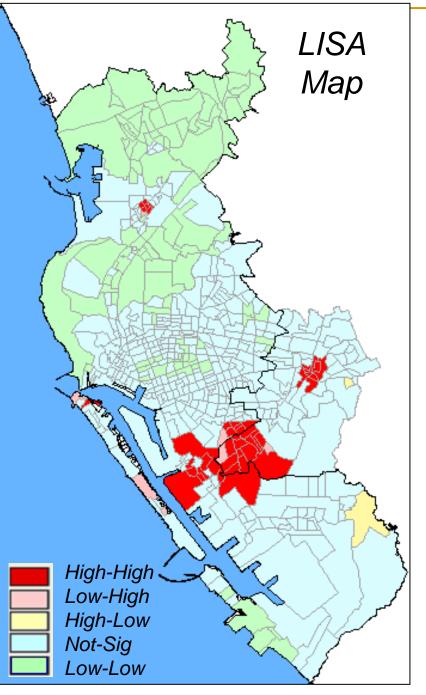
#### p-value of Local Moran



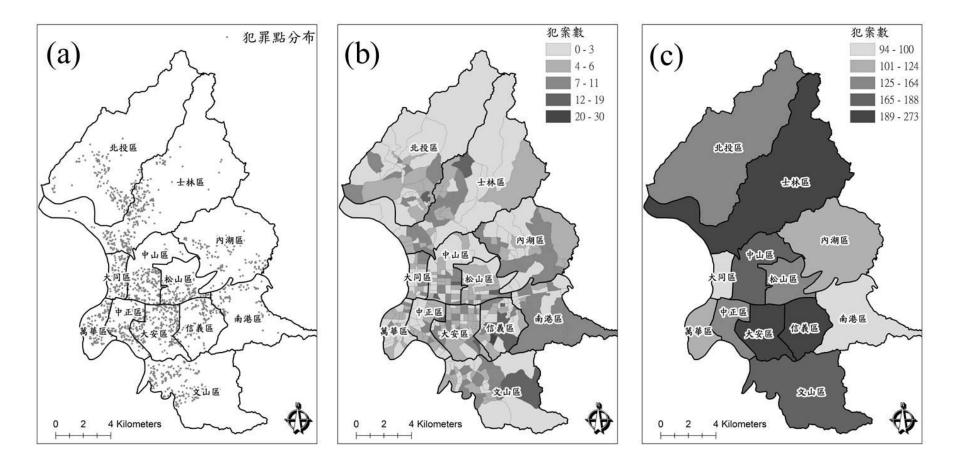
#### LISA Cluster Map





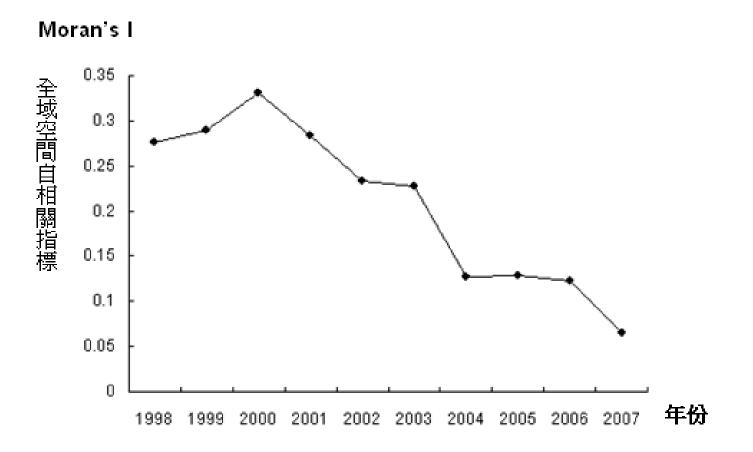


# 應用範例: 1998-2007年台北市住宅竊盜犯罪趨勢分析

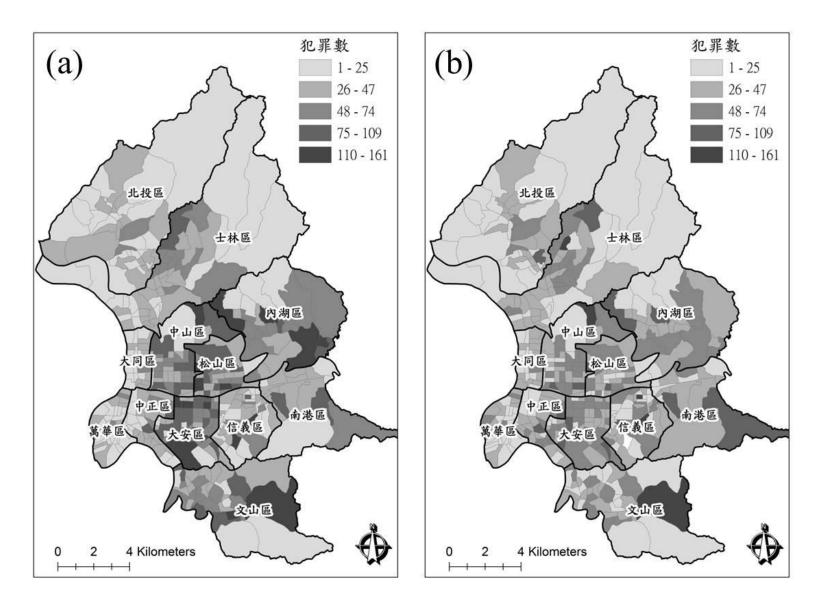


溫在弘等 (2010), 犯罪地圖繪製與熱區分析方法及其應用:以1998~2007年臺北市住宅竊盜犯罪為例, 地理研究 52:43-63

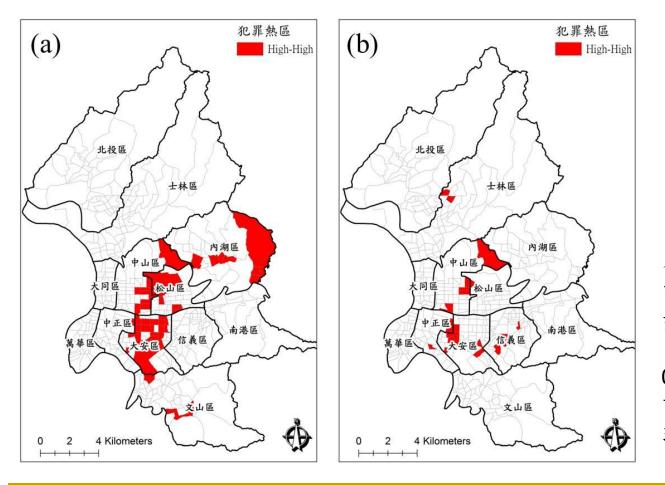
#### **Temporal Trend of Global Moran's I**



#### (a). 1998-2002 vs. (b). 2003-2007



## Local Moran's I (LISA): H-H hot-spots (a). 1998-2002 vs. (b). 2003-2007



參數設定:以正方格 四交點相鄰的Queen 型態為相鄰定義,紅 色的地區亦即表示在 0.05的統計顯著水準 下,犯罪趨勢顯著呈 現地理群聚的區域

## **Recap: General G-statistic**

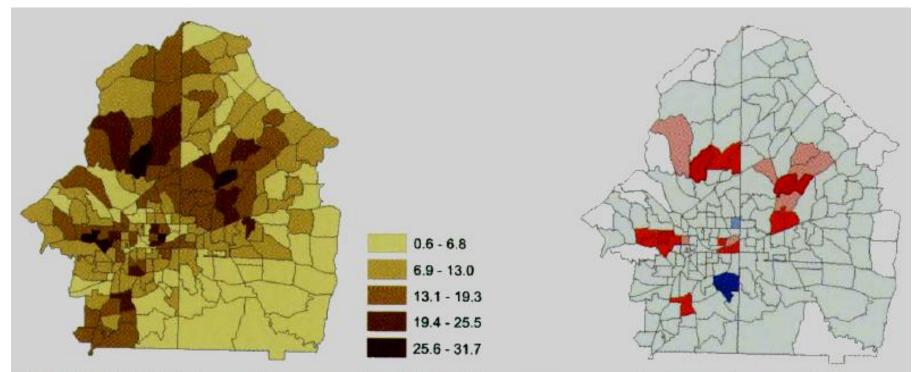
- Moran's I & Geary's C Ratio 無法區別 "hot spots" or "cold spots"
- Spatial Concentration method
- Definition

$$G(d) = \frac{\sum \sum w_{ij}(d) x_i x_j}{\sum \sum x_i x_j}$$

d : neighborhood distance W<sub>ij</sub> : 1 if it is within d, 0 otherwise

 Calculation of G must begin by identifying a neighborhood distance within which cluster is expected to occur

# 2. Local Analysis of G-statistic: Identifying spatial concentration with low and high values



Percent age 65 and over, by census tract (left). The map on the right shows clusters of tracts having a high percentage of seniors (orange) and tracts having a significantly lower percentage than their neighbors (blue).

Source: Chapter 4 Identifying clusters The ESRI Guide to GIS Analysis, Volume 2

## **Local G-statistic**

#### Two versions of the local G-statistic

There are two versions of this statistic, both developed by Art Getis and Keith Ord. In one version, the value of the target feature itself is not included in the equation. This is the Gi statistic. You'd use the Gi statistic if you're interested in the effect of the target feature on what's going on around it. This would be the case if you're interested in the dispersion of a particular phenomenon from the target feature to the surrounding area over time. Getis and Ord, for example, used Gi to track the dispersion of AIDS to counties surrounding San Francisco County over the course of several years. They wanted to see if the intensity of clustering of AIDS cases in counties surrounding San Francisco increased over time and the distance at which the clustering peaked. See the references at the end of this chapter for more on the Gi statistic.

In the other version, called Gi\* (pronounced G-i-star), the value of the target feature is included. If you're interested in finding hot spots or cold spots, you'd use Gi\*—you'll want to include the value of the target feature since its value contributes to the occurrence of the cluster.

## **Getis-Ord Local G Statistic**

 $G_i(d) = \frac{\sum_{j} w_{ij}(d) x_j}{\sum_{j} x_j}; j \neq i$ 

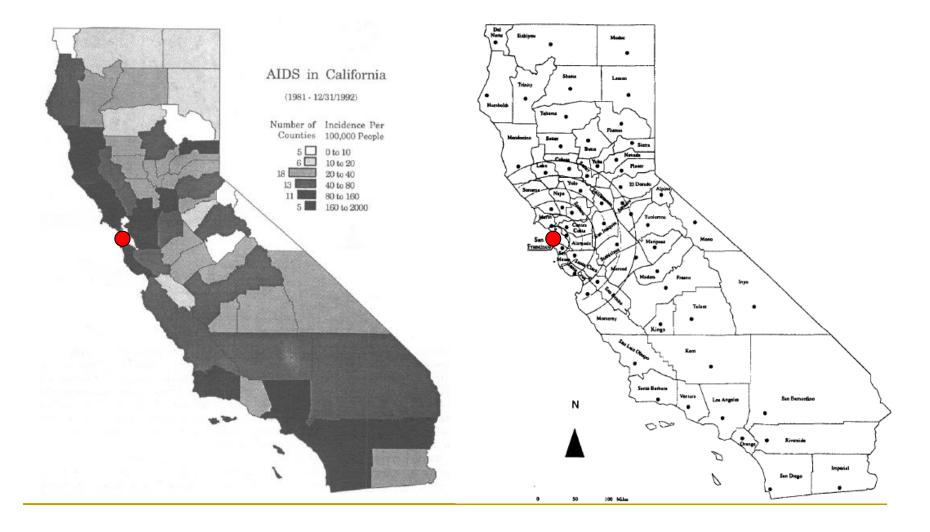
- The Gi statistic excludes the value at i from the summation and is used for spread or diffusion studies
- the Gi\* includes the value at i in the summation ( for all j ) and is most often used for studies of clustering

 Smaller
 Gi(d)
 Larger

 Cluster of low values
 Mean
 Cluster of high values

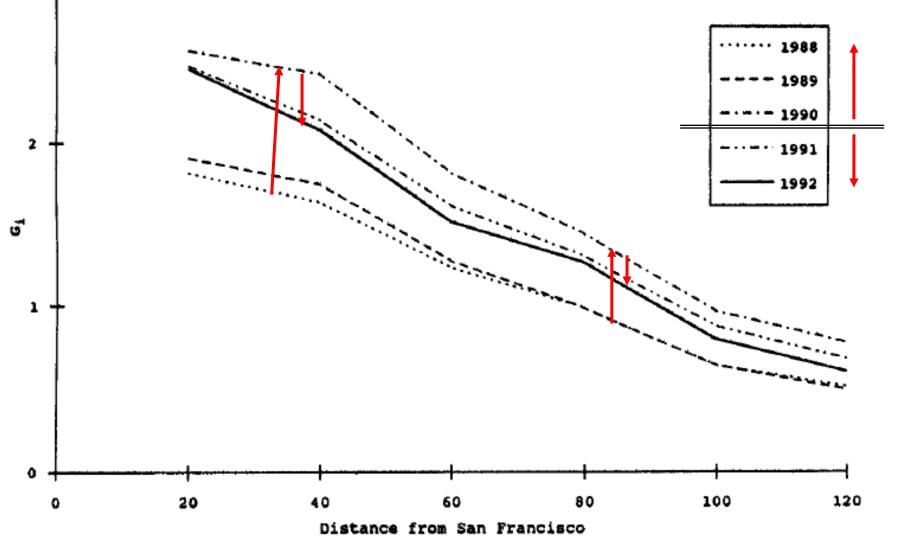
 Source: Chapter 4 Identifying clusters<br/>The ESRI Guide to GIS Analysis, Volume 2

# **Example: Diffusion of AIDS in California**



#### Source: Ord and Getis, 1995

The rate of AIDS cases increased uniformly over the area of clustering from 1988-1990 and declined uniformed after 1990



Source: Ord and Getis, 1995

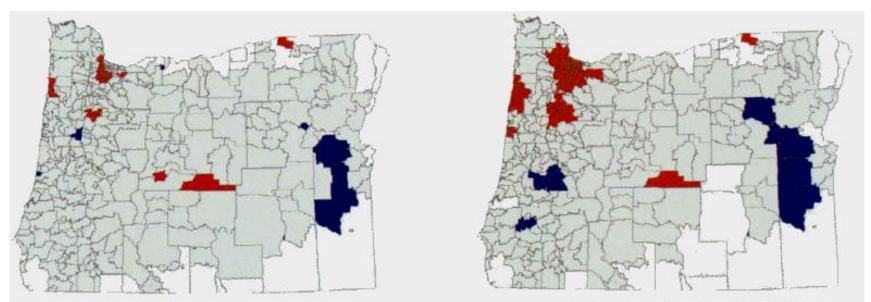
# **Testing the statistical significance of Gi\***



Source: Chapter 4 Identifying clusters The ESRI Guide to GIS Analysis, Volume 2

## **Neighborhood Definition**

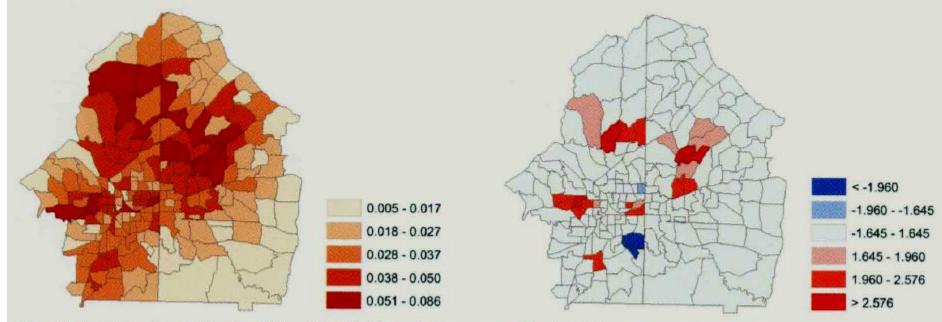
#### Distance-based neighborhood.



Clusters of ZIP Codes baving high numbers of people more likely (orange) or less likely (blue) to buy pet supplies. Using a distance of five miles (left map), the clusters are smaller and more localized. Using a distance of 20 miles (right) creates larger, regional clusters.

Source: Chapter 4 Identifying clusters The ESRI Guide to GIS Analysis, Volume 2

#### Mapping the result of Gi\* values



Census tracts color coded by Gi\* values (left) and Z-scores, calculated from percent age 65 and over

Source: Chapter 4 Identifying clusters The ESRI Guide to GIS Analysis, Volume 2

## R Lab: Using R packages to calculate Gi\* using localG() function

#### G and Gstar local spatial statistics

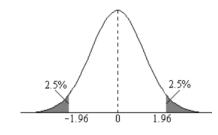
#### Description

The local spatial statistic G is calculated for each zone based on the spatial weights object used. The value returned is a Z-value, and may be used as a diagnostic tool. High positive values indicate the posibility of a local cluster of high values of the variable being analysed, very low relative values a similar cluster of low values. For inference, a Bonferroni-type test is suggested in the references, where tables of critical values may be found (see also details below).

#### Usage

localG(x, listw, zero.policy=NULL, spChk=NULL, GeoDa=FALSE, alternative = "two.sided",
 return\_internals=TRUE)

## R Lab: Using R packages to calculate Gi\* using localG() function



localG(x, listw, zero.policy=NULL, spChk=NULL, GeoDa=FALSE, alternative = "two.sided",
return\_internals=TRUE)

```
TWN_nb_in <- include.self(TWN_nb)</pre>
```

TWN\_nb\_in\_w <- nb2listw(TWN\_nb\_in, zero.policy=T)</pre>

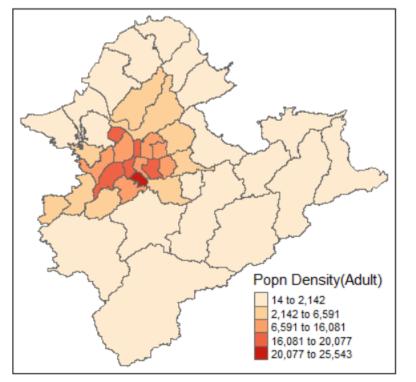
LG <- <pre>localG(Density, TWN\_nb\_in\_w)

#### Standardized Gi\* values

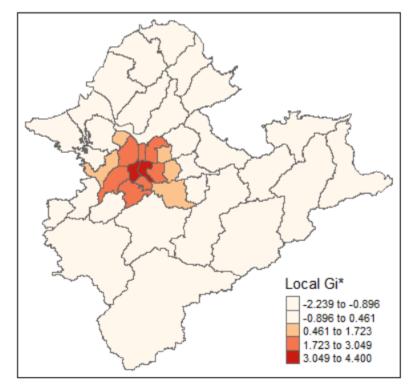
```
> LG
 1 1.7233446 1.5358246 2.2955770 2.2575385 3.5680055 2.4243832 4.4002452 1.5935843 -0.2011367 0.1873412
     0.2039434 -1.7879950 2.6015773 3.0486377
                                                 2.4917352 2.9034051 1.1389338 -0.8962848 0.4607859 -0.9741356
[11]
[21] -1.4210311 -1.4498460 -1.6708723 -1.8162000
                                                 0.4273101 1.0063072
                                                                      0.4332790 -0.3465971 -1.3485541 -1.0850525
[31] -2.2394723 -2.0938802 -1.7500732 -1.5259770 -1.6278155 -2.1806525 -2.0660263 -1.5440033 -1.9083605 -1.4421784
[41] -1.9553767
attr(,"gstari")
[1] TRUE
attr(,"call")
localG(x = Density, listw = TWN_nb_in_w)
attr(,"class")
[1] "localG"
```

#### **R Lab: Mapping Standardized Gi\* values**

#### Population



#### Standardized Gi\* values



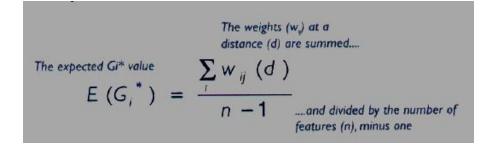
#### Statistical Test for Significant Hot-spots

The Z-score for Gi\*

$$Z(G_{i}^{*}) = \frac{G_{i}^{*} - E(G_{i}^{*})}{\sqrt{Var(G_{i}^{*})}}$$

The expected Gi\* value is subtracted from the observed Gi\*....

....and the difference divided by the square root of the variance



| <pre>attr(,"internals")</pre> |            |              |            |                 |
|-------------------------------|------------|--------------|------------|-----------------|
| G*i                           | E(G*i)     | V(G*i)       | Z(G*i)     | Pr(z != E(G*i)) |
| [1,] 0.0423710270             | 0.02439024 | 1.088612e-04 | 1.7233446  | 8.482623e-02    |
| [2,] 0.0421929468             | 0.02439024 | 1.343658e-04 | 1.5358246  | 1.245814e-01    |
| [3,] 0.0483415035             | 0.02439024 | 1.088612e-04 | 2.2955770  | 2.170008e-02    |
| [4,] 0.0458835729             | 0.02439024 | 9.064358e-05 | 2.2575385  | 2.397445e-02    |
| [5,] 0.0583601259             | 0.02439024 | 9.064358e-05 | 3.5680055  | 3.597090e-04    |
| [6,] 0.0496854224             | 0.02439024 | 1.088612e-04 | 2.4243832  | 1.533442e-02    |
| [7,] 0.0662836240             | 0.02439024 | 9.064358e-05 | 4.4002452  | 1.081286e-05    |
| [8,] 0.0365111192             | 0.02439024 | 5.785193e-05 | 1.5935843  | 1.110292e-01    |
| [9,] 0.0226255011             | 0.02439024 | 7.698039e-05 | -0.2011367 | 8.405917e-01    |
| [10,] 0.0263448971            | 0.02439024 | 1.088612e-04 | 0.1873412  | 8.513931e-01    |
| [11,] 0.0257598513            | 0.02439024 | 4.509962e-05 | 0.2039434  | 8.383977e-01    |
| [12,] 0.0057349205            | 0.02439024 | 1.088612e-04 | -1.7879950 | 7.377682e-02    |

#### **R Lab: Mapping Significant Hot-spots**

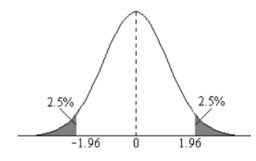
```
signif <- 0.05
```

pvalue <- attr(LG,"internals")[,5]</pre>

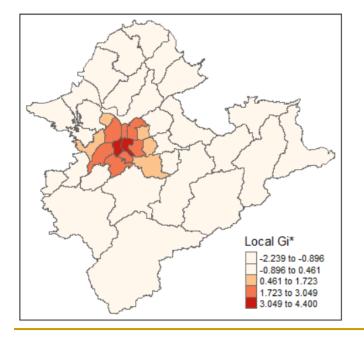
cluster\_type[ pvalue > signif] <- "NoSig" NorthTW\_sf\$CLUSTER <- cluster\_type</pre>

colors <- c('High' ='red','Low' ='blue','NoSig' = 'lightgray')
tm\_shape(NorthTW\_sf) + tm\_polygons("CLUSTER", palette = colors)</pre>

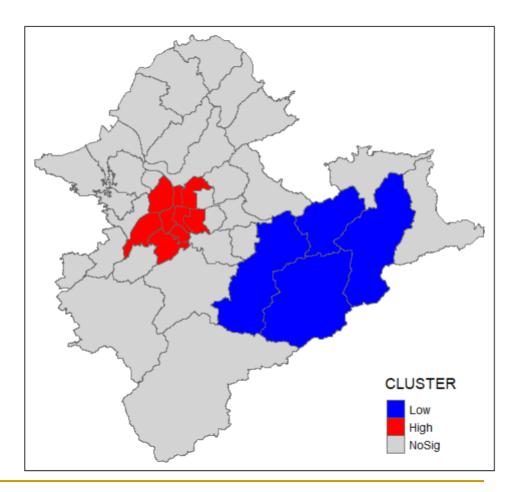
#### **Mapping Significant Hot-spots**



#### Standardized Gi\* values



alpha = 0.05



# Permutation test for Gi\*: using localg\_perm() function

localG\_perm(x, listw, nsim=499, zero.policy=NULL, spChk=NULL, alternative = "two.sided", iseed=NULL, fix\_i\_in\_Gstar\_permutations=TRUE, no\_repeat\_in\_row=FALSE)

LG2 <- localG\_perm(Density, TWN\_nb\_in\_w, zero.policy=T)

#### attr(,"internals")

|       | Gi           | E.Gi       | Var.Gi       | StdDev.Gi   | Pr(z != E(Gi)) | Pr(z != E(Gi)) Sim |
|-------|--------------|------------|--------------|-------------|----------------|--------------------|
| [1,]  | 0.0423710270 |            |              |             |                |                    |
| [2,]  | 0.0421929468 | 0.02865076 | 1.242791e-04 | 1.21475820  | 0.2244583266   | 0.256              |
| [3,]  | 0.0483415035 | 0.03060241 | 9.986728e-05 | 1.77508738  | 0.0758834603   | 0.100              |
| [4,]  | 0.0458835729 | 0.02686970 | 9.527768e-05 | 1.94793785  | 0.0514224003   | 0.072              |
| [5,]  | 0.0583601259 | 0.02704150 | 8.461074e-05 | 3.40478727  | 0.0006621561   | 0.004              |
| [6,]  | 0.0496854224 | 0.03087008 | 1.095546e-04 | 1.79761526  | 0.0722379985   | 0.080              |
| [7,]  | 0.0662836240 | 0.02954181 | 9.664297e-05 | 3.73745079  | 0.0001858955   | 0.004              |
| [8,]  | 0.0365111192 | 0.02410787 | 6.523618e-05 | 1.53564651  | 0.1246251017   | 0.160              |
| [9,]  | 0.0226255011 | 0.02325691 | 8.668502e-05 | -0.06781694 | 0.9459313626   | 0.968              |
| [10,] | 0.0263448971 | 0.02508155 | 1.075757e-04 | 0.12180542  | 0.9030531247   | 0.856              |
| [11,] | 0.0257598513 | 0.02324279 | 4.929261e-05 | 0.35851128  | 0.7199607260   | 0.736              |





#### 【10】熱區分析:LISA、Gi\*與多重檢定校正:FDR

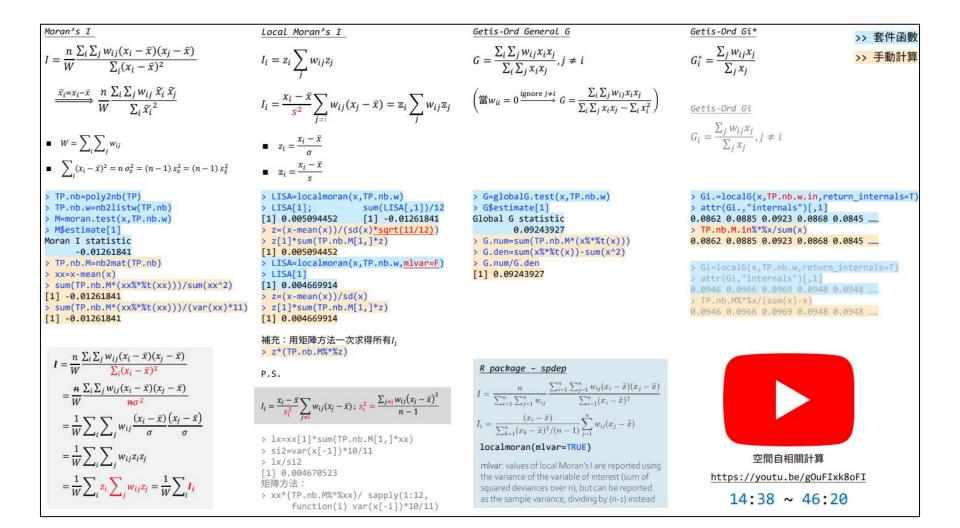
● 授課投影片

|     | 助教投影片   | 0  | LAB10 |      | 助教課影片 |
|-----|---------|----|-------|------|-------|
| You | 空間自相關詳細 | 計算 |       | 多重檢定 | 校正    |

#### 空間自相關的詳細計算



#### https://www.youtube.com/watch?v=gOuFIxk8oFI&t=876s



## 熱區分析的空間統計方法:第二部分

- Host-spot analysis (for polygon data)
  - Local Moran's I index
  - Local G-statistic (Gi\*)
- Issues of multiple testing for hot-spot analysis
  - Bonferroni correction
  - □ False discovery rate (FDR)

#### **Textbook Chapter**

#### TEXT\_Local.Stat.pdf

Chapter 8

#### Local Statistics

#### CHAPTER OBJECTIVES

In this chapter, we:

- Explain the concepts underlying the emerging array of *local statistics*
- Account for the relatively late arrival of local statistics on the spatial analytic scene
- Review the various approaches that can be used to construct *localities* for the development of local statistics
- $\bullet\,$  Discuss how the popular Getis-Ord family of G statistics are calculated and interpreted
- Outline the local version of Moran's I statistic
- Explain why inference based on local statistics is challenging and describe current approaches to dealing with the difficulties
- Provide an overview of the increasingly popular method geographically weighted regression
- Explain how many other spatial analysis methods can be considered as local statistics even if this was not the intent behind their original development

#### Chap 8: Local Statistics

p.223 - p.226

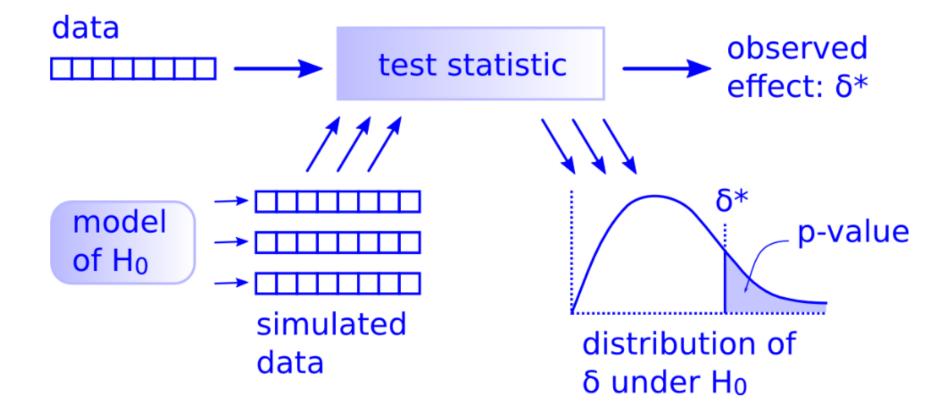
8.1 Introduction: Think geographically, measure locally

8.2 Defining the local

8.3 An example

8.4 Inference with local statistics





**Recap: Type I Error and Significance Level** 

Type I error (false positive 偽陽性):

the incorrect rejection of a true null hypothesis

 Significance level (or rate of Type I error): the probability of rejecting the null hypothesis given that it is true.

#### **Recap: Global vs. Local Measures in Spatial Analysis**

- Global measures consider all available locations simultaneously, utilizing a single statistic that summarizes the spatial pattern.
- Local measures represent the association between each location and its neighbors based on defined distances.

One statistic is provided for each location, facilitating the identification of clusters, testing of stationarity assumptions, and inference about distances over which spatial association occurs.

#### **Statistical Issues for Local Measures**

 Local statistics rely on tests of spatial association for each location in the data, and the issues of multiple comparisons and spatial dependency are the concerns when assessing their significance

## **Multiple Comparisons (or Multiple Testing)**

Setting the significance level = 0.05 (rate of Type I Error)

REAL



A total of polygons (N) = 1050

TRUE Random = 1000 (null)

TRUE Clusters = 50 (reject null)

**Spatial Statistical Results** 

A total of polygons (N) = 1050 Accept null hypothesis (n1 = 950): Random = 1000 \* 0.95 = 950

Reject null hypothesis (n2 = 100): Clusters (Type I error) = 1000 \* 0.05 = 50 TRUE Clusters = 50 (true positive)

The local analysis identifies 100 polygons as clusters! However, **HALF** of them are WRONG !!! How to make sure the rate of Type I Error = 0.05

$$0.05 = 1 - (1 - \alpha)^n$$
  
= 1 - (1 - \alpha) <sup>100</sup>

## $\alpha = 0.000153$

## Adjusting for multiple comparisons (cont'd)

Sidak Correction (1967, 1968, 1971)

The Sidak correction controls for **the overall probability** of type I error, but with critical values appraised at a level  $1-(1-\alpha)^{1/n}$ . Therefore, a test is considered significant when  $p \leq p_{critical} = 1-(1-\alpha)^{1/n}$ 

#### Weakness: usually produce conservative results.

## Adjusting for multiple comparisons

The Bonferroni method

It evaluates the significance of the test statistics at a critical probability value ( $p_{critical}$ ) set equal to  $\alpha/n$ , where  $\alpha$  is the overall type I error rate for the data. All test statistics whose probability values (p) satisfy the condition  $p \leq p_{critical} = \alpha / n = p_{BON}$  are considered significant (null hypothesis is rejected)

Weakness: usually produce **conservative** results.

## **Rationale for alternative approach**

- Ignoring the issue of multiple testing would
  - imply spending a large amount of human and financial resources *unnecessarily and*
  - *inefficiently*.
- The extremely conservative methods would result in a <u>major failure</u> to curb the spread of the disease (or crime events).

## Adjusting for multiple comparisons: The false discovery rate (FDR)

#### Benjamini and Hochberg (1995)

step-by-step procedure:

Assume that there are *m* hypotheses to be tested

(1) order the test statistics p-values (p<sub>i</sub>)

in ascending order ( $p_1 \leq p_2 \leq ... \leq p_m$ );

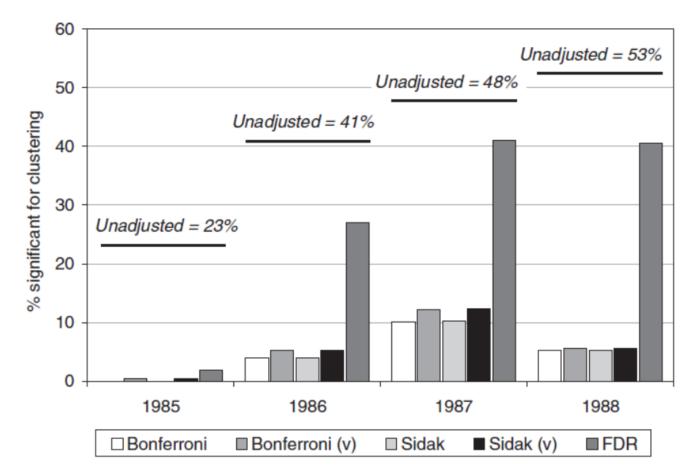
(2) starting from  $p_m$  find the first  $p_i$  for which  $p_i \leq p_{critical} = (i/m) \alpha$ ;

(3) regard all tests as significant for which  $p_i \leq p_{critical} = (i/m) \alpha = p_{FDR}$ .

## **Comparisons of different corrections**

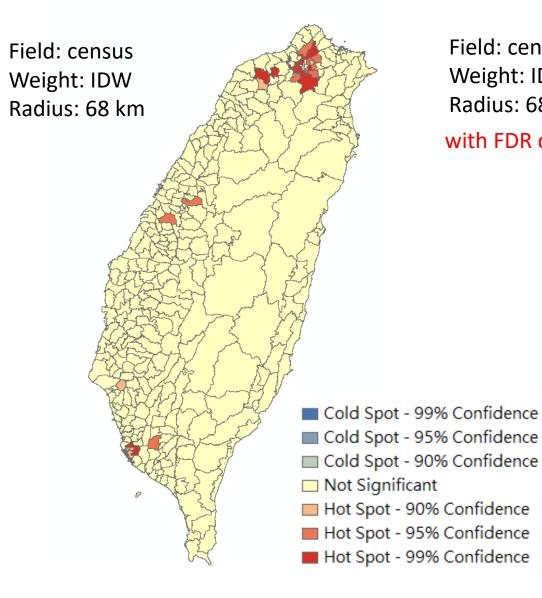
| Year               | Unadjusted    | Correcting for<br>multiplicity* |               |               | Correcting for multiplicity<br>and spatial dependence <sup>†</sup> |               | Recovery ratio <sup>‡</sup> |  |
|--------------------|---------------|---------------------------------|---------------|---------------|--------------------------------------------------------------------|---------------|-----------------------------|--|
|                    |               | Bonferroni                      | Sidak         | FDR           | Bonferroni                                                         | Sidak         |                             |  |
| 1987 (N = 740)     |               |                                 |               |               |                                                                    |               |                             |  |
| $G_i^*(d)$         |               |                                 |               |               | _                                                                  |               |                             |  |
| Accept null        | 387           | 665                             | 664           | 436           | 650                                                                | 649           |                             |  |
| Reject null        | 353           | 75                              | 76            | 304           | 90                                                                 | 91            |                             |  |
| Cluster high rates | 142           | 20                              | 21            | 116           | 28                                                                 | 28            | 0.824                       |  |
| Cluster low rates  | 211           | 55                              | 55            | 188           | 62                                                                 | 63            |                             |  |
| Pcritical          | 0.025         | 0.0000338                       | 0.0000342     | 0.0100272     | 0.0000616                                                          | 0.0000624     |                             |  |
| Zcritical          | $\pm 1.95996$ | $\pm 3.98469$                   | $\pm 3.98169$ | $\pm 2.32533$ | $\pm 3.83958$                                                      | $\pm 3.83648$ |                             |  |
| $G_i(d)$           |               |                                 |               |               |                                                                    |               |                             |  |
| Accept null        | 392           | 675                             | 675           | 437           | 659                                                                | 659           |                             |  |
| Reject null        | 348           | 65                              | 65            | 303           | 81                                                                 | 81            |                             |  |
| Cluster high rates | 136           | 16                              | 16            | 116           | 21                                                                 | 21            | 0.841                       |  |
| Cluster low rates  | 212           | 49                              | 49            | 187           | 60                                                                 | 60            |                             |  |
| Pcritical          | 0.025         | 0.0000338                       | 0.0000342     | 0.0101780     | 0.0000616                                                          | 0.0000624     |                             |  |
| Zcritical          | $\pm 1.95996$ | $\pm 3.98469$                   | $\pm 3.98169$ | $\pm 2.31972$ | $\pm 3.83958$                                                      | $\pm 3.83648$ |                             |  |
| Moran's Ii         |               |                                 |               |               |                                                                    |               |                             |  |
| Accept null        | 439           | 740                             | 740           | 479           | 740                                                                | 740           |                             |  |
| Reject null        | 301           | 0                               | 0             | 261           | 0                                                                  | 0             |                             |  |
| Cluster high rates | 100           | 0                               | 0             | 83            | 0                                                                  | 0             | 0.867                       |  |
| Cluster low rates  | 201           | 0                               | 0             | 178           | 0                                                                  | 0             |                             |  |
| $p_{critical}$     | 0.05          | 0.0000676                       | 0.0000693     | 0.0220000     | 0.0001232                                                          | 0.0001264     |                             |  |
| Zcritical          | 1.64485       | 3.81691                         | 3.81061       | 2.01409       | 3.66588                                                            | 3.65936       |                             |  |

## **Comparisons of different corrections (cont'd)**



**Figure 2.** Percentage of plots that tested significant for clustering, according to the  $G_i^*(d)$  statistic and different control procedures—Machadinho (1985/95).

## **Result: the hotspots of population using Gi\*(d)**



Field: census Weight: IDW Radius: 68 km with FDR correction T 27

#### **Hotspots with/without FDR correction**

|   | OID | OBJECTID | SOURC | CENSUS | GiZScore | GiPValue | Gi_Bin | L |
|---|-----|----------|-------|--------|----------|----------|--------|---|
|   | 55  | 56       | 55    | 516468 | 6.020918 | 0        |        | 3 |
|   | 46  | 47       | 46    | 401619 | 4.501931 | 0.000007 |        | 3 |
|   | 43  | 44       | 43    | 384051 | 4.269309 | 0.00002  |        | 3 |
|   | 63  | 64       | 63    | 376584 | 4.170142 | 0.00003  |        | 3 |
|   | 228 | 229      | 228   | 357536 | 3.912712 | 0.000091 |        | 3 |
|   | 220 | 221      | 220   | 338361 | 3.661243 | 0.000251 |        | 3 |
|   | 218 | 219      | 218   | 329913 | 3.548686 | 0.000387 |        | 3 |
|   | 262 | 263      | 262   | 322678 | 3.451571 | 0.000557 |        | 3 |
|   | 31  | 32       | 31    | 315818 | 3.367603 | 0.000758 |        | 3 |
|   | 29  | 30       | 29    | 292096 | 3.050694 | 0.002283 | 1      | 3 |
|   | 62  | 63       | 62    | 272500 | 2.790864 | 0.005257 | < 0.01 | 3 |
|   | 34  | 35       | 34    | 254521 | 2.553956 | 0.010651 |        | 2 |
|   | 35  | 36       | 35    | 253920 | 2.546308 | 0.010887 |        | 2 |
|   | 36  | 37       | 36    | 247904 | 2.465707 | 0.013674 |        | 2 |
|   | 38  | 39       | 38    | 237530 | 2.331119 | 0.019747 |        | 2 |
|   | 45  | 46       | 45    | 231938 | 2.255883 | 0.024078 |        | 2 |
|   | 352 | 353      | 352   | 231129 | 2.239411 | 0.025129 |        | 2 |
|   | 49  | 50       | 49    | 229383 | 2.225159 | 0.026071 |        | 2 |
|   | 1   | 2        | 1     | 221815 | 2.116672 | 0.034288 |        | 2 |
|   | 32  | 33       | 32    | 216043 | 2.047546 | 0.040604 |        | 2 |
|   | 179 | 180      | 179   | 215245 | 2.028891 | 0.042465 | < 0.05 | 2 |
|   | 37  | 38       | 37    | 205031 | 1.901785 | 0.057195 | 1      | 1 |
|   | 40  | 41       | 40    | 204024 | 1.890186 | 0.058733 |        | 1 |
|   | 232 | 233      | 232   | 203001 | 1.868696 | 0.061665 |        | 1 |
|   | 233 | 234      | 233   | 199535 | 1.823772 | 0.068186 | < 0.1  | 1 |
|   | 103 | 104      | 103   | 198372 | 1.805552 | 0.070988 | × 0.1  | 1 |
|   | 219 | 220      | 219   | 194521 | 1.757798 | 0.078782 |        | 1 |
|   | 93  | 94       | 93    | 185752 | 1.638691 | 0.101278 |        | 0 |
| 1 | 294 | 295      | 294   | 177796 | 1.534813 | 0.12483  |        | 0 |

#### with FDR correction

Gi IDW FDR

#### OID OBJECTID SOURCE ID CENSUS GiZScore GiPValue Gi Bin 6.020918 4.501931 0.000007 4.269309 0.00002 4.170142 0.00003 3.912712 0.000091 3.661243 0.000251 3.548686 0.000387 3.451571 0.000557 3.367603 0.000758 3.050694 0.002283 0.005257 2.790864 2.553956 0.010651 2.546308 0.010887 2.465707 0.013674 2.331119 0.019747 2.255883 0.024078 2.239411 0.025129 0.026071 2.225159 2.116672 0.034288 2.047546 0.040604 2.028891 0.042469 1.901785 0.057199 0.058733 1.890186 1.868696 0.061665 1.823772 0.068186 0.070988 1.805552 1.757798 0.078782 1.638691 0.101278 1.534813 0.12483

. ......

- - - - - - - -

**FDR correction** 

### $p_i \leq p_{\text{critical}} = \frac{(i/m)\alpha}{\alpha} = p_{\text{FDR}}.$

m = 361

|    | А        | В      | С      | F        | G           | н      | I    | J           | К           | L           | М       | N        | 0        |
|----|----------|--------|--------|----------|-------------|--------|------|-------------|-------------|-------------|---------|----------|----------|
| 1  | OBJECTIE | SOURCE | CENSUS | GiZScore | GiPValue    | Gi_Bin | Rank | P_FDR_0.1   | P_FDR_0.05  | P_FDR_0.01  | Sig_0.1 | Sig_0.05 | Sig_0.01 |
| 2  | 56       | 55     | 516468 | 6.021    | 0.000000002 | 3      | 1    | 0.000277008 | 0.000138504 | 2.77008E-05 | Sig     | Sig      | Sig      |
| 3  | 47       | 46     | 401619 | 4.502    | 0.000006734 | 3      | 2    | 0.000554017 | 0.000277008 | 5.54017E-05 | Sig     | Sig      | Sig      |
| 4  | 44       | 43     | 384051 | 4.269    | 0.000019608 | 3      | 3    | 0.000831025 | 0.000415512 | 8.31025E-05 | Sig     | Sig      | Sig      |
| 5  | 64       | 63     | 376584 | 4.170    | 0.000030441 | 3      | 4    | 0.001108033 | 0.000554017 | 0.000110803 | Sig     | Sig      | Sig      |
| 6  | 229      | 228    | 357536 | 3.913    | 0.000091265 | 3      | 5    | 0.001385042 | 0.000692521 | 0.000138504 | Sig     | Sig      | Sig      |
| 7  | 221      | 220    | 338361 | 3.661    | 0.000250994 | 3      | 6    | 0.00166205  | 0.000831025 | 0.000166205 | Sig     | Sig      | FALSE    |
| 8  | 219      | 218    | 329913 | 3.549    | 0.000387159 | 3      | 7    | 0.001939058 | 0.000969529 | 0.000193906 | Sig     | Sig      | FALSE    |
| 9  | 263      | 262    | 322678 | 3.452    | 0.000557333 | 3      | 8    | 0.002216066 | 0.001108033 | 0.000221607 | Sig     | Sig      | FALSE    |
| 10 | 32       | 31     | 315818 | 3.368    | 0.000758246 | 3      | 9    | 0.002493075 | 0.001246537 | 0.000249307 | Sig     | Sig      | FALSE    |
| 11 | 30       | 29     | 292096 | 3.051    | 0.002283134 | 3      | 10   | 0.002770083 | 0.001385042 | 0.000277008 | Sig     | FALSE    | FALSE    |
| 12 | 63       | 62     | 272500 | 2.791    | 0.005256756 | 3      | 11   | 0.003047091 | 0.001523546 | 0.000304709 | FALSE   | FALSE    | FALSE    |
| 13 | 35       | 34     | 254521 | 2.554    | 0.010650667 | 2      | 12   | 0.0033241   | 0.00166205  | 0.00033241  | FALSE   | FALSE    | FALSE    |
| 14 | 36       | 35     | 253920 | 2.546    | 0.010886894 | 2      | 13   | 0.003601108 | 0.001800554 | 0.000360111 | FALSE   | FALSE    | FALSE    |
| 15 | 37       | 36     | 247904 | 2.466    | 0.013674312 | 2      | 14   | 0.003878116 | 0.001939058 | 0.000387812 | FALSE   | FALSE    | FALSE    |
| 16 | 39       | 38     | 237530 | 2.331    | 0.019747089 | 2      | 15   | 0.004155125 | 0.002077562 | 0.000415512 | FALSE   | FALSE    | FALSE    |
| 17 | 46       | 45     | 231938 | 2.256    | 0.024077970 | 2      | 16   | 0.004432133 | 0.002216066 | 0.000443213 | FALSE   | FALSE    | FALSE    |
| 18 | 353      | 352    | 231129 | 2.239    | 0.025129188 | 2      | 17   | 0.004709141 | 0.002354571 | 0.000470914 | FALSE   | FALSE    | FALSE    |
| 19 | 50       | 49     | 229383 | 2.225    | 0.026070581 | 2      | 18   | 0.00498615  | 0.002493075 | 0.000498615 | FALSE   | FALSE    | FALSE    |
| 20 | 2        | 1      | 221815 | 2.117    | 0.034287671 | 2      | 19   | 0.005263158 | 0.002631579 | 0.000526316 | FALSE   | FALSE    | FALSE    |
| 21 | 33       | 32     | 216043 | 2.048    | 0.040604468 | 2      | 20   | 0.005540166 | 0.002770083 | 0.000554017 | FALSE   | FALSE    | FALSE    |
| 22 | 180      | 179    | 215245 | 2.029    | 0.042469389 | 2      | 21   | 0.005817175 | 0.002908587 | 0.000581717 | FALSE   | FALSE    | FALSE    |
| 23 | 38       | 37     | 205031 | 1.902    | 0.057199259 | 1      | 22   | 0.006094183 | 0.003047091 | 0.000609418 | FALSE   | FALSE    | FALSE    |
| 24 | 41       | 40     | 204024 | 1.890    | 0.058733043 | 1      | 23   | 0.006371191 | 0.003185596 | 0.000637119 | FALSE   | FALSE    | FALSE    |
| 25 | 233      | 232    | 203001 | 1.869    | 0.061665141 | 1      | 24   | 0.006648199 | 0.0033241   | 0.00066482  | FALSE   | FALSE    | FALSE    |
| 26 | 234      | 233    | 199535 | 1.824    | 0.068186495 | 1      | 25   | 0.006925208 | 0.003462604 | 0.000692521 | FALSE   | FALSE    | FALSE    |
| 27 | 104      | 103    | 198372 | 1.806    | 0.070988331 | 1      | 26   | 0.007202216 | 0.003601108 | 0.000720222 | FALSE   | FALSE    | FALSE    |
| 28 | 220      | 219    | 194521 | 1.758    | 0.078781940 | 1      | 27   | 0.007479224 | 0.003739612 | 0.000747922 | FALSE   | FALSE    | FALSE    |
| 29 | 94       | 93     | 185752 | 1.639    | 0.101277593 | 0      | 28   | 0.007756233 | 0.003878116 | 1.07427E-06 | FALSE   | FALSE    | FALSE    |
| 30 | 295      | 294    | 177796 | 1.535    | 0.124829823 | 0      | 29   | 0.008033241 | 0.00401662  | 1.11264E-06 | FALSE   | FALSE    | FALSE    |

## Using p.adjust() function

## p.adjust

#### **Adjust P-Values For Multiple Comparisons**

Given a set of p-values, returns p-values adjusted using one of several methods.

Keywords htest

#### Usage

```
p.adjust(p, method = p.adjust.methods, n = length(p))
p.adjust.methods
# c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
# "fdr", "none")
```

#### Arguments

**p** numeric vector of p-values (possibly with **NA** s). Any other R object is coerced by **as.numeric**.

method correction method. Can be abbreviated.

#### Mapping p-values (localmoran)

> LISA.Popn <- localmoran(Density, TWN\_nb\_w, zero.policy=T)
> LISA.Popn

|     | Ii          | E.Ii   | Var.Ii     | Z.Ii       | Pr(z > 0)    |
|-----|-------------|--------|------------|------------|--------------|
| 221 | 0.668654386 | -0.025 | 0.17429750 | 1.66148935 | 4.830760e-02 |
| 222 | 0.552267439 | -0.025 | 0.22386865 | 1.22005786 | 1.112215e-01 |
| 223 | 1.122969659 | -0.025 | 0.17429750 | 2.74969696 | 2.982520e-03 |
| 224 | 0.520540764 | -0.025 |            |            | 7.331298e-02 |
| 225 | 1.283663684 | -0.025 | 0.14125006 | 3.48203973 | 2.488049e-04 |
| 226 | 1.275561091 | -0.025 | 0.17429750 | 3.11519460 | 9.191180e-04 |
| 227 | 2.310784759 | -0.025 | 0.14125006 | 6.21496221 | 2.566850e-10 |
|     |             |        |            |            |              |

## Mapping p-values (FDR correction)

LISA.Popn <- localmoran(Density, TWN\_nb\_w, zero.policy=T)

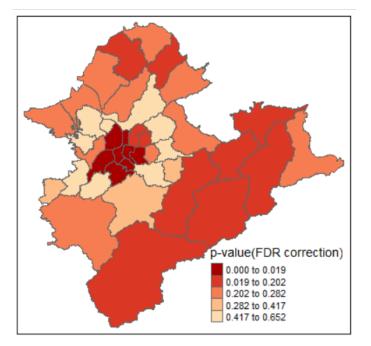
NorthTW\_sf\$pvalue.adj <- p.adjust(LISA.Popn[,5], method="fdr")

pvalue = (i/41) x pvalue.adj

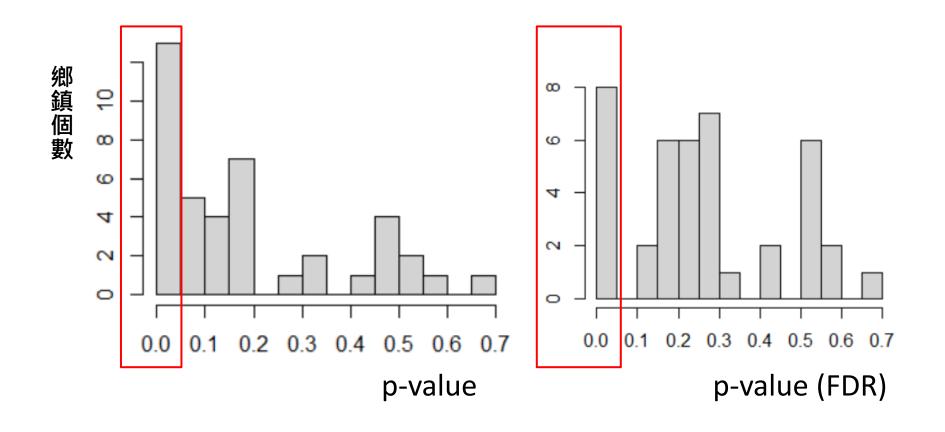
$$\rightarrow$$
 pvalue \* (41/i) = pvalue.adj

> min(NorthTW\_sf\$pvalue.adj)
[1] 1.052409e-08
> min(NorthTW\_sf\$pvalue) \* 41
[1] 1.052409e-08

> max(NorthTW\_sf\$pvalue.adj)
[1] 0.6524963
> max(NorthTW\_sf\$pvalue)
[1] 0.6524963



#### **Comparisons of p-values before/after correction**

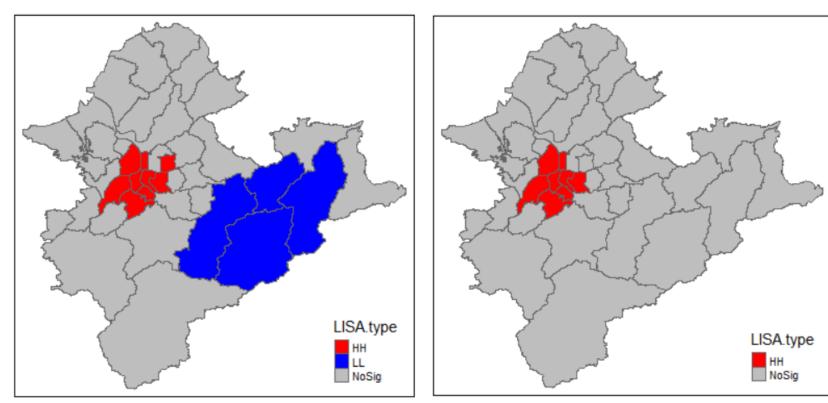


#### **Mapping LISA Maps**

alpha = 0.05

LISA map

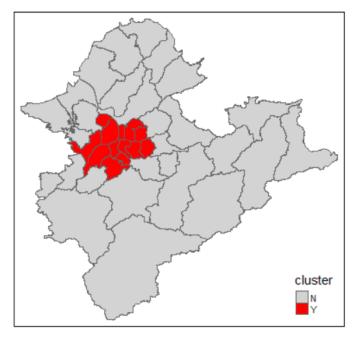
#### LISA map (FDR correction)



#### **Mapping Significant Hot-spots (Gi\*)**

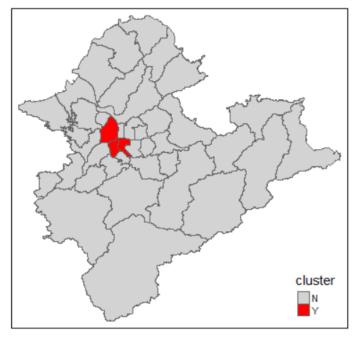
alpha = 0.05

Z<sup>\*</sup> = 1.65



Bonferroni correction alpha = 0.05/41

Z<sup>\*</sup> = 3.03



#### p.adjustSP

#### Adjust Local Association Measures' P-Values

Make an adjustment to local association measures' p-values based on the number of neighbours (+1) of each region, rather than the total number of regions.

Keywords spatial

#### Usage

p.adjustSP(p, nb, method = "none")

#### Arguments

p vector of p-values

nb a list of neighbours of class nb

methodcorrection method as defined in p.adjust: "The adjustment methods include the<br/>Bonferroni correction ("bonferroni") in which the p-values are multiplied by the number of<br/>comparisons. Four less conservative corrections are also included by Holm (1979) ("'holm"),<br/>Hochberg (1988) ("hochberg"), Hommel (1988) ("hommel") and Benjamini & Hochberg<br/>(1995) ("'fdr"), respectively. A pass-through option ("none") is also included."

#### **Comparisons:** p.adjust vs. p.adjustSP

NorthTW\_sf\$pvalue.adj2.1 <p.adjust (LISA.Popn[,5], method="fdr")</pre>

NorthTW\_sf\$pvalue.adj2.2 <p.adjustSP(LISA.Popn[,5], TWN\_nb, method="fdr")

## **Comparisons:** p.adjust vs. p.adjustSP

|     | 未校正的p-value  |            | p.adjust      | p.adjustSP  |
|-----|--------------|------------|---------------|-------------|
|     | •            | • •        | pvalue.adj2.1 |             |
| 221 | 0.1720592912 | 0.32065595 | 0.32065595    | 1.000000000 |
| 222 | 0.2134934671 | 0.33666277 | 0.33666277    | 1.000000000 |
|     | 0.0576411094 |            | 0.19798039    | 0.345846656 |
| 224 | 0.0312678035 | 0.18313999 | 0.18313999    | 0.218874624 |
| 225 | 0.0005928042 | 0.01215249 | 0.01215249    | 0.004149629 |
| 226 | 0.0460037835 | 0.19212781 | 0.19212781    | 0.276022701 |

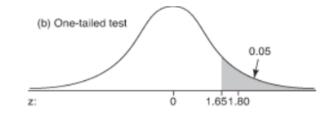
## Using localg() function for adjustment

spdep (version 1.1-7)

## localG: G and Gstar local spatial statistics

#### Description

The local spatial statistic G is calculated for each zone based on the spatial weights object used. The value returned is a Z-value, and may be used as a diagnostic tool. High positive values indicate the posibility of a local cluster of high values of the variable being analysed, very low relative values a similar cluster of low values. For inference, a Bonferroni-type test is suggested in the references, where tables of critical values may be found (see also details below).



The critical values of the statistic under assumptions given in the references for the 95th percentile are for n=1: 1.645, n=50: 3.083, n=100: 3.289, n=1000: 3.886.

#### The Bonferroni correction method

The critical values of the statistic under assumptions given in the references for the 95th percentile are for n=1: 1.645, n=50: 3.083, n=100: 3.289, n=1000: 3.886.

```
> qnorm(1-0.05, 0, 1)
[1] 1.644854
> qnorm(1-0.05/50, 0, 1)
[1] 3.090232
> qnorm(1-0.05/100, 0, 1)
[1] 3.290527
> qnorm(1-0.05/1000, 0, 1)
[1] 3.890592
```

