This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

# 分析目標:建立「學校 500 公尺內之速食店,應至少對應一間素食店」之空間對應策略


library(sf)
library(dplyr)
library(ggplot2)
library(tmap)

school <- st_read("C:/Users/13569/Downloads/SCHOOL (1)/SCHOOL.shp", options = "ENCODING=big5")
options:        ENCODING=big5 
Reading layer `SCHOOL' from data source `C:\Users\13569\Downloads\SCHOOL (1)\SCHOOL.shp' using driver `ESRI Shapefile'
Simple feature collection with 148 features and 4 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 297078.6 ymin: 2763290 xmax: 312516.7 ymax: 2784542
Projected CRS: TWD97 / TM2 zone 121
tpe_fastfood <- st_read("C:/Users/13569/Downloads/Tpe_Fastfood (1)/Tpe_Fastfood.shp", options = "ENCODING=big5")
options:        ENCODING=big5 
Reading layer `Tpe_Fastfood' from data source `C:\Users\13569\Downloads\Tpe_Fastfood (1)\Tpe_Fastfood.shp' using driver `ESRI Shapefile'
Simple feature collection with 98 features and 8 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 297198.9 ymin: 2763885 xmax: 312205.7 ymax: 2781148
Projected CRS: TWD97 / TM2 zone 121
tpe_vill <- st_read("C:/Users/13569/Downloads/Taipei_Vill/Taipei_Vill.shp", options = "ENCODING=big5")
options:        ENCODING=big5 
Reading layer `Taipei_Vill' from data source `C:\Users\13569\Downloads\Taipei_Vill\Taipei_Vill.shp' using driver `ESRI Shapefile'
Simple feature collection with 456 features and 8 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 296094.4 ymin: 2761518 xmax: 317198.9 ymax: 2789180
Projected CRS: TWD97 / TM2 zone 121
health_food <- st_read("C:/Users/13569/Downloads/Healthy_Food_Locations/Healthy_Food_Locations.shp")
Reading layer `Healthy_Food_Locations' from data source `C:\Users\13569\Downloads\Healthy_Food_Locations\Healthy_Food_Locations.shp' using driver `ESRI Shapefile'
Simple feature collection with 50 features and 3 fields
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 121.4432 ymin: 24.9735 xmax: 121.5807 ymax: 25.1475
Geodetic CRS:  WGS 84
school <- st_transform(school, 3826)
tpe_fastfood <- st_transform(tpe_fastfood, 3826)
tpe_vill <- st_transform(tpe_vill, 3826)
health_food <- st_transform(health_food, 3826)

school_buffer <- st_buffer(school, dist = 500)

fastfood_near_school <- st_join(tpe_fastfood, school_buffer, join = st_within, left = FALSE)

fastfood_buffer <- st_buffer(fastfood_near_school, dist = 500)

intersections <- st_intersects(fastfood_buffer, health_food)

fastfood_buffer$has_healthfood <- lengths(intersections) > 0
fastfood_buffer$need_policy <- ifelse(fastfood_buffer$has_healthfood, "已有健康點", "需設置健康店")


tmap_mode("plot")
ℹ tmap mode set to "plot".
tm_shape(tpe_vill) +
  tm_borders() +
  tm_shape(fastfood_buffer) +
  tm_fill(col = "need_policy", palette = c("green", "red"), title = "500m共存圈狀態") +
  tm_shape(tpe_fastfood) +
  tm_dots(col = "blue", size = 0.1, title = "速食店") +
  tm_shape(health_food) +
  tm_dots(col = "darkgreen", size = 0.1, title = "健康飲食據點") +
  tm_layout(title = "學校周邊的速食店附近是否有素食餐廳")

── tmap v3 code detected ──────────────────────────────────────────────────────────────────────────────────────────────────────────────
[v3->v4] `tm_tm_polygons()`: migrate the argument(s) related to the scale of the visual variable `fill` namely 'palette' (rename to
'values') to fill.scale = tm_scale(<HERE>).[v3->v4] `tm_polygons()`: migrate the argument(s) related to the legend of the visual variable `fill` namely 'title' to 'fill.legend =
tm_legend(<HERE>)'[tm_dots()] Argument `title` unknown.[tm_dots()] Argument `title` unknown.[v3->v4] `tm_layout()`: use `tm_title()` instead of `tm_layout(title = )`Multiple palettes called "green" found: "kovesi.green", "tableau.green". The first one, "kovesi.green", is returned.

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQojIOWIhuaekOebruaome+8muW7uueri+OAjOWtuOagoSA1MDAg5YWs5bC65YWn5LmL6YCf6aOf5bqX77yM5oeJ6Iez5bCR5bCN5oeJ5LiA6ZaT57Sg6aOf5bqX44CN5LmL56m66ZaT5bCN5oeJ562W55WlDQoNCg0KbGlicmFyeShzZikNCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpsaWJyYXJ5KHRtYXApDQoNCnNjaG9vbCA8LSBzdF9yZWFkKCJDOi9Vc2Vycy8xMzU2OS9Eb3dubG9hZHMvU0NIT09MICgxKS9TQ0hPT0wuc2hwIiwgb3B0aW9ucyA9ICJFTkNPRElORz1iaWc1IikNCnRwZV9mYXN0Zm9vZCA8LSBzdF9yZWFkKCJDOi9Vc2Vycy8xMzU2OS9Eb3dubG9hZHMvVHBlX0Zhc3Rmb29kICgxKS9UcGVfRmFzdGZvb2Quc2hwIiwgb3B0aW9ucyA9ICJFTkNPRElORz1iaWc1IikNCnRwZV92aWxsIDwtIHN0X3JlYWQoIkM6L1VzZXJzLzEzNTY5L0Rvd25sb2Fkcy9UYWlwZWlfVmlsbC9UYWlwZWlfVmlsbC5zaHAiLCBvcHRpb25zID0gIkVOQ09ESU5HPWJpZzUiKQ0KaGVhbHRoX2Zvb2QgPC0gc3RfcmVhZCgiQzovVXNlcnMvMTM1NjkvRG93bmxvYWRzL0hlYWx0aHlfRm9vZF9Mb2NhdGlvbnMvSGVhbHRoeV9Gb29kX0xvY2F0aW9ucy5zaHAiKQ0KDQpzY2hvb2wgPC0gc3RfdHJhbnNmb3JtKHNjaG9vbCwgMzgyNikNCnRwZV9mYXN0Zm9vZCA8LSBzdF90cmFuc2Zvcm0odHBlX2Zhc3Rmb29kLCAzODI2KQ0KdHBlX3ZpbGwgPC0gc3RfdHJhbnNmb3JtKHRwZV92aWxsLCAzODI2KQ0KaGVhbHRoX2Zvb2QgPC0gc3RfdHJhbnNmb3JtKGhlYWx0aF9mb29kLCAzODI2KQ0KDQpzY2hvb2xfYnVmZmVyIDwtIHN0X2J1ZmZlcihzY2hvb2wsIGRpc3QgPSA1MDApDQoNCmZhc3Rmb29kX25lYXJfc2Nob29sIDwtIHN0X2pvaW4odHBlX2Zhc3Rmb29kLCBzY2hvb2xfYnVmZmVyLCBqb2luID0gc3Rfd2l0aGluLCBsZWZ0ID0gRkFMU0UpDQoNCmZhc3Rmb29kX2J1ZmZlciA8LSBzdF9idWZmZXIoZmFzdGZvb2RfbmVhcl9zY2hvb2wsIGRpc3QgPSA1MDApDQoNCmludGVyc2VjdGlvbnMgPC0gc3RfaW50ZXJzZWN0cyhmYXN0Zm9vZF9idWZmZXIsIGhlYWx0aF9mb29kKQ0KDQpmYXN0Zm9vZF9idWZmZXIkaGFzX2hlYWx0aGZvb2QgPC0gbGVuZ3RocyhpbnRlcnNlY3Rpb25zKSA+IDANCmZhc3Rmb29kX2J1ZmZlciRuZWVkX3BvbGljeSA8LSBpZmVsc2UoZmFzdGZvb2RfYnVmZmVyJGhhc19oZWFsdGhmb29kLCAi5bey5pyJ5YGl5bq36bueIiwgIumcgOioree9ruWBpeW6t+W6lyIpDQoNCg0KdG1hcF9tb2RlKCJwbG90IikNCnRtX3NoYXBlKHRwZV92aWxsKSArDQogIHRtX2JvcmRlcnMoKSArDQogIHRtX3NoYXBlKGZhc3Rmb29kX2J1ZmZlcikgKw0KICB0bV9maWxsKGNvbCA9ICJuZWVkX3BvbGljeSIsIHBhbGV0dGUgPSBjKCJncmVlbiIsICJyZWQiKSwgdGl0bGUgPSAiNTAwbeWFseWtmOWciOeLgOaFiyIpICsNCiAgdG1fc2hhcGUodHBlX2Zhc3Rmb29kKSArDQogIHRtX2RvdHMoY29sID0gImJsdWUiLCBzaXplID0gMC4xLCB0aXRsZSA9ICLpgJ/po5/lupciKSArDQogIHRtX3NoYXBlKGhlYWx0aF9mb29kKSArDQogIHRtX2RvdHMoY29sID0gImRhcmtncmVlbiIsIHNpemUgPSAwLjEsIHRpdGxlID0gIuWBpeW6t+mjsumjn+aTmum7niIpICsNCiAgdG1fbGF5b3V0KHRpdGxlID0gIuWtuOagoeWRqOmCiueahOmAn+mjn+W6l+mZhOi/keaYr+WQpuaciee0oOmjn+mkkOW7syIpDQpgYGANCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0K