This is an R Markdown
Notebook. When you execute code within the notebook, the results appear
beneath the code.
Try executing this chunk by clicking the Run button within
the chunk or by placing your cursor inside it and pressing
Ctrl+Shift+Enter.
library(sf)
library(dplyr)
library(tmap)
taipei_li <- st_read("C:/Users/user/OneDrive/文件/空間/Taipei_Vill.shp")
Reading layer `Taipei_Vill' from data source
`C:\Users\user\OneDrive\文件\空間\Taipei_Vill.shp' using driver `ESRI Shapefile'
Simple feature collection with 456 features and 8 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 296094.4 ymin: 2761518 xmax: 317198.9 ymax: 2789180
Projected CRS: TWD97 / TM2 zone 121
fastfood <- st_read("C:/Users/user/OneDrive/文件/空間/Tpe_Fastfood.shp")
Reading layer `Tpe_Fastfood' from data source
`C:\Users\user\OneDrive\文件\空間\Tpe_Fastfood.shp' using driver `ESRI Shapefile'
Simple feature collection with 98 features and 8 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 297198.9 ymin: 2763885 xmax: 312205.7 ymax: 2781148
Projected CRS: TWD97 / TM2 zone 121
schools <- st_read("C:/Users/user/OneDrive/文件/空間/SCHOOL.shp")
Reading layer `SCHOOL' from data source
`C:\Users\user\OneDrive\文件\空間\SCHOOL.shp' using driver `ESRI Shapefile'
Simple feature collection with 148 features and 4 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 297078.6 ymin: 2763290 xmax: 312516.7 ymax: 2784542
Projected CRS: TWD97 / TM2 zone 121
schools <- st_transform(schools, st_crs(fastfood))
taipei_li <- st_transform(taipei_li, st_crs(fastfood))
A_districts <- c("文山區", "大安區", "中正區")
B_districts <- c("信義區", "南港區", "松山區")
A_li <- taipei_li %>% filter(TOWN %in% A_districts)
B_li <- taipei_li %>% filter(TOWN %in% B_districts)
fastfood_A <- fastfood[A_li, ]
fastfood_B <- fastfood[B_li, ]
buffer_A <- st_buffer(fastfood_A, dist = 15000)
buffer_B <- st_buffer(fastfood_B, dist = 15000)
count_A <- lengths(st_intersects(buffer_A, schools))
count_B <- lengths(st_intersects(buffer_B, schools))
length(count_A)
[1] 0
length(count_B)
[1] 0
t.test(count_A, count_B, var.equal = FALSE)
錯誤發生在 t.test.default(count_A, count_B, var.equal = FALSE):
'x' 觀察值數量不夠
library(spdep)
library(stars)
library(spatialreg)
library(spdep)
bbox <- st_bbox(taipei_li)
grid <- st_make_grid(taipei_li, cellsize = 500, square = TRUE) %>%
st_sf() %>%
st_filter(taipei_li)
grid$fastfood_count <- lengths(st_intersects(grid, fastfood))
nb <- poly2nb(grid, queen = TRUE)
lw <- nb2listw(nb, style = "W")
nb <- poly2nb(grid, queen = TRUE)
lw <- nb2listw(nb, style = "W")
mcorr <- sp.correlogram(nb, grid$fastfood_count,
order = 10, method = "I", style = "W")
plot(mcorr)

library(spdep)
library(sf)
library(dplyr)
grid$school_count <- lengths(st_intersects(grid, schools))
Gi_fastfood <- localG(grid$fastfood_count, lw)
Gi_school <- localG(grid$school_count, lw)
grid$Gi_fastfood <- as.numeric(Gi_fastfood)
grid$Gi_school <- as.numeric(Gi_school)
grid$p_fastfood <- 2 * pnorm(-abs(grid$Gi_fastfood))
grid$p_school <- 2 * pnorm(-abs(grid$Gi_school))
grid$p_fastfood_adj <- p.adjust(grid$p_fastfood, method = "BH")
grid$p_school_adj <- p.adjust(grid$p_school, method = "BH")
grid$hotspot_fastfood <- grid$p_fastfood_adj < 0.05 & grid$Gi_fastfood > 0
grid$hotspot_school <- grid$p_school_adj < 0.05 & grid$Gi_school > 0
tm_shape(grid) +
tm_fill("hotspot_fastfood", palette = c("white", "red"), title = "速食店熱區") +
tm_borders()
── tmap v3 code detected ─────────────────────────────────────────────────────────────
[v3->v4] `tm_tm_fill()`: migrate the argument(s) related to the scale of the visual
variable `fill` namely 'palette' (rename to 'values') to fill.scale =
tm_scale(<HERE>).[v3->v4] `tm_fill()`: migrate the argument(s) related to the legend of the visual
variable `fill` namely 'title' to 'fill.legend = tm_legend(<HERE>)'

tm_shape(grid) +
tm_fill("hotspot_school", palette = c("white", "blue"), title = "學校熱區") +
tm_borders()
── tmap v3 code detected ─────────────────────────────────────────────────────────────
[v3->v4] `tm_tm_fill()`: migrate the argument(s) related to the scale of the visual
variable `fill` namely 'palette' (rename to 'values') to fill.scale =
tm_scale(<HERE>).[v3->v4] `tm_fill()`: migrate the argument(s) related to the legend of the visual
variable `fill` namely 'title' to 'fill.legend = tm_legend(<HERE>)'

library(sf)
library(dplyr)
library(spatstat.geom)
taipei_li <- st_read("C:/Users/user/OneDrive/文件/空間/Taipei_Vill.shp")
Reading layer `Taipei_Vill' from data source
`C:\Users\user\OneDrive\文件\空間\Taipei_Vill.shp' using driver `ESRI Shapefile'
Simple feature collection with 456 features and 8 fields
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 296094.4 ymin: 2761518 xmax: 317198.9 ymax: 2789180
Projected CRS: TWD97 / TM2 zone 121
fastfood <- st_read("C:/Users/user/OneDrive/文件/空間/Tpe_Fastfood.shp")
Reading layer `Tpe_Fastfood' from data source
`C:\Users\user\OneDrive\文件\空間\Tpe_Fastfood.shp' using driver `ESRI Shapefile'
Simple feature collection with 98 features and 8 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 297198.9 ymin: 2763885 xmax: 312205.7 ymax: 2781148
Projected CRS: TWD97 / TM2 zone 121
study_districts <- c("文山區", "大安區", "信義區")
study_area <- taipei_li %>% filter(TOWN %in% study_districts)
bbox <- st_bbox(study_area)
win <- owin(
xrange = c(as.numeric(bbox["xmin"]), as.numeric(bbox["xmax"])),
yrange = c(as.numeric(bbox["ymin"]), as.numeric(bbox["ymax"]))
)
錯誤發生在 if (!is.vector(xrange) || length(xrange) != 2 || xrange[2L] < :
需要 TRUE/FALSE 值的地方有缺值
Add a new chunk by clicking the Insert Chunk button on the
toolbar or by pressing Ctrl+Alt+I.
When you save the notebook, an HTML file containing the code and
output will be saved alongside it (click the Preview button or
press Ctrl+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the
editor. Consequently, unlike Knit, Preview does not
run any R code chunks. Instead, the output of the chunk when it was last
run in the editor is displayed.
LS0tDQp0aXRsZTogIkZpbmFsX2IxMjIwODAxNyINCmF1dGhvcjogIlNhcmFoIg0KZGF0ZTogIjIwMjUtMDUtMjYiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB0cnVlDQogICAgdG9jX2RlcHRoOiAnNicNCiAgICBkZl9wcmludDogcGFnZWQNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZGVwdGg6IDYNCiAgICB0b2NfZmxvYXQ6IHRydWUNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpsaWJyYXJ5KHNmKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodG1hcCkNCg0KdGFpcGVpX2xpIDwtIHN0X3JlYWQoIkM6L1VzZXJzL3VzZXIvT25lRHJpdmUv5paH5Lu2L+epuumWky9UYWlwZWlfVmlsbC5zaHAiKQ0KZmFzdGZvb2QgPC0gc3RfcmVhZCgiQzovVXNlcnMvdXNlci9PbmVEcml2ZS/mlofku7Yv56m66ZaTL1RwZV9GYXN0Zm9vZC5zaHAiKQ0Kc2Nob29scyA8LSBzdF9yZWFkKCJDOi9Vc2Vycy91c2VyL09uZURyaXZlL+aWh+S7ti/nqbrplpMvU0NIT09MLnNocCIpDQoNCnNjaG9vbHMgPC0gc3RfdHJhbnNmb3JtKHNjaG9vbHMsIHN0X2NycyhmYXN0Zm9vZCkpDQp0YWlwZWlfbGkgPC0gc3RfdHJhbnNmb3JtKHRhaXBlaV9saSwgc3RfY3JzKGZhc3Rmb29kKSkNCg0KQV9kaXN0cmljdHMgPC0gYygi5paH5bGx5Y2AIiwgIuWkp+WuieWNgCIsICLkuK3mraPljYAiKQ0KQl9kaXN0cmljdHMgPC0gYygi5L+h576p5Y2AIiwgIuWNl+a4r+WNgCIsICLmnb7lsbHljYAiKQ0KDQpBX2xpIDwtIHRhaXBlaV9saSAlPiUgZmlsdGVyKFRPV04gJWluJSBBX2Rpc3RyaWN0cykNCkJfbGkgPC0gdGFpcGVpX2xpICU+JSBmaWx0ZXIoVE9XTiAlaW4lIEJfZGlzdHJpY3RzKQ0KDQpmYXN0Zm9vZF9BIDwtIGZhc3Rmb29kW0FfbGksIF0NCmZhc3Rmb29kX0IgPC0gZmFzdGZvb2RbQl9saSwgXQ0KDQpidWZmZXJfQSA8LSBzdF9idWZmZXIoZmFzdGZvb2RfQSwgZGlzdCA9IDE1MDAwKQ0KYnVmZmVyX0IgPC0gc3RfYnVmZmVyKGZhc3Rmb29kX0IsIGRpc3QgPSAxNTAwMCkNCg0KY291bnRfQSA8LSBsZW5ndGhzKHN0X2ludGVyc2VjdHMoYnVmZmVyX0EsIHNjaG9vbHMpKQ0KY291bnRfQiA8LSBsZW5ndGhzKHN0X2ludGVyc2VjdHMoYnVmZmVyX0IsIHNjaG9vbHMpKQ0KbGVuZ3RoKGNvdW50X0EpDQpsZW5ndGgoY291bnRfQikNCg0KdC50ZXN0KGNvdW50X0EsIGNvdW50X0IsIHZhci5lcXVhbCA9IEZBTFNFKQ0KYGBgDQpgYGB7cn0NCg0KbGlicmFyeShzcGRlcCkNCmxpYnJhcnkoc3RhcnMpDQpsaWJyYXJ5KHNwYXRpYWxyZWcpDQpsaWJyYXJ5KHNwZGVwKQ0KDQpiYm94IDwtIHN0X2Jib3godGFpcGVpX2xpKQ0KZ3JpZCA8LSBzdF9tYWtlX2dyaWQodGFpcGVpX2xpLCBjZWxsc2l6ZSA9IDUwMCwgc3F1YXJlID0gVFJVRSkgJT4lDQogIHN0X3NmKCkgJT4lDQogIHN0X2ZpbHRlcih0YWlwZWlfbGkpDQoNCmdyaWQkZmFzdGZvb2RfY291bnQgPC0gbGVuZ3RocyhzdF9pbnRlcnNlY3RzKGdyaWQsIGZhc3Rmb29kKSkNCg0KbmIgPC0gcG9seTJuYihncmlkLCBxdWVlbiA9IFRSVUUpDQpsdyA8LSBuYjJsaXN0dyhuYiwgc3R5bGUgPSAiVyIpDQoNCm5iIDwtIHBvbHkybmIoZ3JpZCwgcXVlZW4gPSBUUlVFKSAgICAgICAgICAgDQpsdyA8LSBuYjJsaXN0dyhuYiwgc3R5bGUgPSAiVyIpICAgICAgICAgICANCg0KbWNvcnIgPC0gc3AuY29ycmVsb2dyYW0obmIsIGdyaWQkZmFzdGZvb2RfY291bnQsDQogICAgICAgICAgICAgICAgICAgICAgICBvcmRlciA9IDEwLCBtZXRob2QgPSAiSSIsIHN0eWxlID0gIlciKQ0KDQpwbG90KG1jb3JyKQ0KDQpgYGANCmBgYHtyfQ0KbGlicmFyeShzcGRlcCkNCmxpYnJhcnkoc2YpDQpsaWJyYXJ5KGRwbHlyKQ0KDQpncmlkJHNjaG9vbF9jb3VudCA8LSBsZW5ndGhzKHN0X2ludGVyc2VjdHMoZ3JpZCwgc2Nob29scykpDQoNCkdpX2Zhc3Rmb29kIDwtIGxvY2FsRyhncmlkJGZhc3Rmb29kX2NvdW50LCBsdykNCkdpX3NjaG9vbCA8LSBsb2NhbEcoZ3JpZCRzY2hvb2xfY291bnQsIGx3KQ0KDQpncmlkJEdpX2Zhc3Rmb29kIDwtIGFzLm51bWVyaWMoR2lfZmFzdGZvb2QpDQpncmlkJEdpX3NjaG9vbCA8LSBhcy5udW1lcmljKEdpX3NjaG9vbCkNCg0KZ3JpZCRwX2Zhc3Rmb29kIDwtIDIgKiBwbm9ybSgtYWJzKGdyaWQkR2lfZmFzdGZvb2QpKQ0KZ3JpZCRwX3NjaG9vbCA8LSAyICogcG5vcm0oLWFicyhncmlkJEdpX3NjaG9vbCkpDQoNCmdyaWQkcF9mYXN0Zm9vZF9hZGogPC0gcC5hZGp1c3QoZ3JpZCRwX2Zhc3Rmb29kLCBtZXRob2QgPSAiQkgiKQ0KZ3JpZCRwX3NjaG9vbF9hZGogPC0gcC5hZGp1c3QoZ3JpZCRwX3NjaG9vbCwgbWV0aG9kID0gIkJIIikNCg0KZ3JpZCRob3RzcG90X2Zhc3Rmb29kIDwtIGdyaWQkcF9mYXN0Zm9vZF9hZGogPCAwLjA1ICYgZ3JpZCRHaV9mYXN0Zm9vZCA+IDANCmdyaWQkaG90c3BvdF9zY2hvb2wgPC0gZ3JpZCRwX3NjaG9vbF9hZGogPCAwLjA1ICYgZ3JpZCRHaV9zY2hvb2wgPiAwDQoNCnRtX3NoYXBlKGdyaWQpICsNCiAgdG1fZmlsbCgiaG90c3BvdF9mYXN0Zm9vZCIsIHBhbGV0dGUgPSBjKCJ3aGl0ZSIsICJyZWQiKSwgdGl0bGUgPSAi6YCf6aOf5bqX54ax5Y2AIikgKw0KICB0bV9ib3JkZXJzKCkNCg0KdG1fc2hhcGUoZ3JpZCkgKw0KICB0bV9maWxsKCJob3RzcG90X3NjaG9vbCIsIHBhbGV0dGUgPSBjKCJ3aGl0ZSIsICJibHVlIiksIHRpdGxlID0gIuWtuOagoeeGseWNgCIpICsNCiAgdG1fYm9yZGVycygpDQoNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoc2YpDQpsaWJyYXJ5KGRwbHlyKQ0KbGlicmFyeShzcGF0c3RhdC5nZW9tKQ0KDQp0YWlwZWlfbGkgPC0gc3RfcmVhZCgiQzovVXNlcnMvdXNlci9PbmVEcml2ZS/mlofku7Yv56m66ZaTL1RhaXBlaV9WaWxsLnNocCIpDQpmYXN0Zm9vZCA8LSBzdF9yZWFkKCJDOi9Vc2Vycy91c2VyL09uZURyaXZlL+aWh+S7ti/nqbrplpMvVHBlX0Zhc3Rmb29kLnNocCIpDQoNCnN0dWR5X2Rpc3RyaWN0cyA8LSBjKCLmloflsbHljYAiLCAi5aSn5a6J5Y2AIiwgIuS/oee+qeWNgCIpDQpzdHVkeV9hcmVhIDwtIHRhaXBlaV9saSAlPiUgZmlsdGVyKFRPV04gJWluJSBzdHVkeV9kaXN0cmljdHMpDQoNCmJib3ggPC0gc3RfYmJveChzdHVkeV9hcmVhKQ0KDQp3aW4gPC0gb3dpbigNCiAgeHJhbmdlID0gYyhhcy5udW1lcmljKGJib3hbInhtaW4iXSksIGFzLm51bWVyaWMoYmJveFsieG1heCJdKSksDQogIHlyYW5nZSA9IGMoYXMubnVtZXJpYyhiYm94WyJ5bWluIl0pLCBhcy5udW1lcmljKGJib3hbInltYXgiXSkpDQopDQoNCnBsb3Qod2luKQ0KDQpmYXN0Zm9vZF9jb29yZHMgPC0gc3RfY29vcmRpbmF0ZXMoZmFzdGZvb2QpDQpmYXN0Zm9vZF9wcHAgPC0gcHBwKHggPSBmYXN0Zm9vZF9jb29yZHNbLDFdLCB5ID0gZmFzdGZvb2RfY29vcmRzWywyXSwgd2luZG93ID0gd2luKQ0KDQpwbG90KHdpbikNCnBsb3QoZmFzdGZvb2RfcHBwLCBhZGQgPSBUUlVFLCBjb2wgPSAicmVkIiwgcGNoID0gMTYpDQoNCkxfZmYgPC0gTGVzdChmYXN0Zm9vZF9wcHAsIGNvcnJlY3Rpb24gPSAiUmlwbGV5IiwgciA9IHNlcSgwLCAzMDAwLCAxMDApKQ0KDQplbnZlbG9wZV9MIDwtIGVudmVsb3BlKHBwcF9mYXN0Zm9vZCwgTGVzdCwgbnNpbSA9IDk5LCBjb3JyZWN0aW9uID0gIlJpcGxleSIsIHIgPSBzZXEoMCwgMzAwMCwgMTAwKSkNCg0KcGxvdChlbnZlbG9wZV9MLCBtYWluID0gIkwoZCkg5Y+K5YW2IE1vbnRlIENhcmxvIOS/oeiztOWNgOmWkyIpDQoNCnNjaG9vbHMkVFlQRSA8LSBpZmVsc2UoZ3JlcGwoIuWFrOeriyIsIHNjaG9vbHMkTkFNRSksICJwdWJsaWMiLCAicHJpdmF0ZSIpDQpzY2hvb2xzX3B1YmxpYyA8LSBzY2hvb2xzICU+JSBmaWx0ZXIoVFlQRSA9PSAicHVibGljIikNCnNjaG9vbHNfcHJpdmF0ZSA8LSBzY2hvb2xzICU+JSBmaWx0ZXIoVFlQRSA9PSAicHJpdmF0ZSIpDQoNCnBwcF9wdWJsaWMgPC0gZ2V0X3BwcChzY2hvb2xzX3B1YmxpYywgd2luKQ0KcHBwX3ByaXZhdGUgPC0gZ2V0X3BwcChzY2hvb2xzX3ByaXZhdGUsIHdpbikNCg0KRl9wdWJsaWMgPC0gRmVzdChwcHBfcHVibGljLCBwcHBfZmFzdGZvb2QsIHIgPSBzZXEoMCwgMzAwMCwgMTAwKSkNCkZfcHJpdmF0ZSA8LSBGZXN0KHBwcF9wcml2YXRlLCBwcHBfZmFzdGZvb2QsIHIgPSBzZXEoMCwgMzAwMCwgMTAwKSkNCg0KcGxvdChGX3B1YmxpYyRyLCBGX3B1YmxpYyRlc3QsIHR5cGUgPSAibCIsIGNvbCA9ICJibHVlIiwgeWxpbSA9IGMoMCwgMSksDQogICAgIHhsYWIgPSAi6Led6ZuiKG0pIiwgeWxhYiA9ICJGKGQpIiwgbWFpbiA9ICLlhaznq4sgdnMg56eB56uL5a245qChIEYoZCkiKQ0KbGluZXMoRl9wcml2YXRlJHIsIEZfcHJpdmF0ZSRlc3QsIGNvbCA9ICJyZWQiKQ0KbGVnZW5kKCJib3R0b21yaWdodCIsIGxlZ2VuZCA9IGMoIuWFrOeri+WtuOagoSIsICLnp4Hnq4vlrbjmoKEiKSwgY29sID0gYygiYmx1ZSIsICJyZWQiKSwgbHR5ID0gMSkNCg0KDQpgYGANCmBgYHtyfQ0KDQpgYGANCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0K