F(d) & K(d) Functions
2. creating F(d) functions
RND<- rpoint(100, win= Windows)
nndist1 <- nncross(RND, schools_ppp)
F = ecdf(nndist1[,1])
RND2<- rpoint(400, win= Windows)
nndist2 <- nncross(RND, RND2)
F_RND <- ecdf(nndist2[,1])
plot(F, main="F function", col = "red", xlim=c(0,5000))
lines(F_RND, col = "gray")

CI_F <- envelope(schools_ppp, fun=Fest, nsim=99, n=1)
Generating 99 simulations of CSR ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98,
99.
Done.
plot(CI_F)

3.1 creating K(d) functions
k <- Kest(schools_ppp)
plot(k, main="K function", xlim=c(0,5000))

CI_K<- envelope(schools_ppp, fun=Kest, nsim=99, n=1)
Generating 99 simulations of CSR ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98,
99.
Done.
plot(CI_K)

3.2 creating L(d) functions
L <- Lest(schools_ppp)
plot(L, main="L function", xlim=c(0,5000))

CI_L<- envelope(schools_ppp, fun=Lest, nsim=99, n=1)
Generating 99 simulations of CSR ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98,
99.
Done.
plot(CI_L, .-r~r)

LS0tDQp0aXRsZTogIlNwYXRpYWwgQW5hbHlzaXM6IDA4Ig0KYXV0aG9yOiAiVHphaS1IdW5nIFdlbiINCmRhdGU6ICcyMDI1LTA0LTI4Jw0Kb3V0cHV0Og0KICBodG1sX25vdGVib29rOg0KICAgIHRvYzogdHJ1ZQ0KICAgIHRvY19kZXB0aDogNg0KICAgIHRvY19mbG9hdDogdHJ1ZQ0KLS0tDQoNCiMjIEYoZCkgJiBLKGQpIEZ1bmN0aW9ucw0KDQojIyMgMS4gY3JlYXRpbmcgUFBQIGZvcm1hdA0KDQpgYGB7ciwgbWVzc2FnZT1GQUxTRX0NCnJtKGxpc3QgPSBscygpKQ0KbGlicmFyeShzZikNCmxpYnJhcnkodG1hcCkNCmxpYnJhcnkoc3BhdHN0YXQpDQoNCiMgc2V0d2QoIkM6L2RhdGEiKQ0Kc2Nob29sc19zZiA8LSBzdF9yZWFkKCIuL0RhdGEvU2Nob29scy5zaHAiKQ0KY291bnR5X3NmIDwtIHN0X3JlYWQoIi4vRGF0YS9UYWluYW5Db3VudHkuc2hwIikNCg0KQ29vcmQgPC0gc3RfY29vcmRpbmF0ZXMoc2Nob29sc19zZikNCldpbmRvd3MgPC0gYXMub3dpbihjb3VudHlfc2YpDQpzY2hvb2xzX3BwcCA8LSBhcy5wcHAoQ29vcmQsIFdpbmRvd3MpDQpwbG90KHNjaG9vbHNfcHBwKQ0KYGBgDQoNCiMjIyAyLiBjcmVhdGluZyBGKGQpIGZ1bmN0aW9ucw0KDQpgYGB7cn0NClJORDwtIHJwb2ludCgxMDAsIHdpbj0gV2luZG93cykNCm5uZGlzdDEgPC0gbm5jcm9zcyhSTkQsIHNjaG9vbHNfcHBwKQ0KRiA9IGVjZGYobm5kaXN0MVssMV0pIA0KDQpSTkQyPC0gcnBvaW50KDQwMCwgd2luPSBXaW5kb3dzKQ0Kbm5kaXN0MiA8LSBubmNyb3NzKFJORCwgUk5EMikNCkZfUk5EIDwtIGVjZGYobm5kaXN0MlssMV0pIA0KDQpwbG90KEYsIG1haW49IkYgZnVuY3Rpb24iLCBjb2wgPSAicmVkIiwgeGxpbT1jKDAsNTAwMCkpDQpsaW5lcyhGX1JORCwgY29sID0gImdyYXkiKQ0KDQpDSV9GIDwtIGVudmVsb3BlKHNjaG9vbHNfcHBwLCBmdW49RmVzdCwgbnNpbT05OSwgbj0xKSANCnBsb3QoQ0lfRikNCmBgYA0KDQojIyMgMy4xIGNyZWF0aW5nIEsoZCkgZnVuY3Rpb25zDQoNCmBgYHtyfQ0KayA8LSBLZXN0KHNjaG9vbHNfcHBwKQ0KcGxvdChrLCBtYWluPSJLIGZ1bmN0aW9uIiwgeGxpbT1jKDAsNTAwMCkpDQpDSV9LPC0gZW52ZWxvcGUoc2Nob29sc19wcHAsIGZ1bj1LZXN0LCBuc2ltPTk5LCBuPTEpIA0KcGxvdChDSV9LKQ0KDQpgYGANCiMjIyAzLjIgY3JlYXRpbmcgTChkKSBmdW5jdGlvbnMNCg0KYGBge3J9DQpMIDwtIExlc3Qoc2Nob29sc19wcHApDQpwbG90KEwsIG1haW49IkwgZnVuY3Rpb24iLCB4bGltPWMoMCw1MDAwKSkNCkNJX0w8LSBlbnZlbG9wZShzY2hvb2xzX3BwcCwgZnVuPUxlc3QsIG5zaW09OTksIG49MSkgDQpwbG90KENJX0wsIC4tcn5yKQ0KYGBgDQoNCg==